Vectors - Miscellaneous (1 page; 4/8/18)

(1) Position vectors, direction vectors and displacement vectors

It is usually worth noting whether a particular vector appearing in a question is a position vector, a direction vector, or a displacement vector. The following examples illustrate the distinction between the three types:
(a) The line $\underline{r}=\binom{x}{y}=\binom{1}{2}+\lambda\binom{3}{4}$ gives the position vector $\binom{x}{y}$ of a point on the line obtained by starting at the point represented by the position vector $\binom{1}{2}$, and moving a certain distance (dependent on λ) in the direction $\binom{3}{4}$
(b) The plane, given in the form $\underline{r}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)+\lambda\left(\begin{array}{l}4 \\ 5 \\ 6\end{array}\right)+\mu\left(\begin{array}{l}7 \\ 8 \\ 9\end{array}\right)$ similarly involves the position vectors $\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \&\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ and the direction vectors $\left(\begin{array}{l}4 \\ 5 \\ 6\end{array}\right) \&\left(\begin{array}{l}7 \\ 8 \\ 9\end{array}\right)$
(c) A plane may be given in the form $(\underline{r}-\underline{a}) \cdot \underline{n}=0$, where \underline{r} is the position vector of a general point in the plane, \underline{a} is the position vector of a specific point in the plane, and \underline{n} is the direction vector of the normal to the plane.

Here we also have the displacement vector $\underline{r}-\underline{a}$. It represents a specific line segment in space, but when taking its scalar product with \underline{n}, we are only concerned with its direction.

