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Vectors - Equation of line (6 pages; 18/9/20)   
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(1) Parametric form  

 

 

 

The vector equation of the line 𝑙   through the points A & B  can be 

written in various (parametric) forms: 

(a)  r = a + 𝜆d  

(b) r = a + 𝜆(𝑏 − 𝑎) 

(c)  r = (1 − 𝜆)a + 𝜆𝑏   

(a weighted average of  𝑎 & 𝑏; when 𝜆 = 0, 𝑟 = 𝑎; when 𝜆 = 1, 
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𝑟 = 𝑏;  when 𝜆 =
1

2
, 𝑟 is the average of  𝑎 & 𝑏; the diagram shows 

𝜆 =
1

3
) 

(d) (in 2D case; similarly for 3D) 

(𝑥
𝑦
) = (𝑎1

𝑎2
) + 𝜆 (𝑑1

𝑑2
)     or   (𝑎1+𝜆𝑑1

𝑎2+𝜆𝑑2
)  

where  a = (𝑎1
𝑎2

)  and d = (𝑑1
𝑑2

)  is any vector in the direction from A 

to B 

(normally d1 & d2 are chosen to be integers with no common 

factor) 

 

Note the difference between (a) the vector equation of the line 

through the points A & B and (b) the vector 𝐴𝐵⃗⃗⃗⃗  ⃗: The vector 𝐴𝐵⃗⃗⃗⃗  ⃗  

has magnitude |AB|  (the distance between A & B) and is in the 

direction from A to B. 

Whereas the vector equation of the line through A & B  is the 

position vector 𝑟 of a general point P on the line, with completely 

different magnitude and direction to that of the vector 𝐴𝐵⃗⃗⃗⃗  ⃗. 

[Note: The line from A to B, not extending beyond A and B is 

sometimes referred to as the 'line segment AB'.] 

 

Exercise: If the line 𝑟 = (
2
3
) + 𝜆 (

1
−2

) can also be written as 

𝑟 = (
0
7
) + 𝜇 (

−3
6

) , find 𝜇 in terms of 𝜆. 

Solution 

2 + λ = −3μ (1) &  3 − 2λ = 7 + 6μ (2)   
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(1) ⇒ μ = −
1

3
(2 + λ)  

[(2) ⇒ μ =
1

6
(−4 − 2λ) = −

1

3
(2 + λ) also] 

 

(2) Relation to the cartesian form 

(𝑥
𝑦
) = (𝑎1

𝑎2
) + 𝜆 (𝑑1

𝑑2
) ⇒ 𝜆 =

𝑥−𝑎1

𝑑1
=

𝑦−𝑎2

𝑑2
 

⇒ 𝑦 = 𝑎2 +
𝑑2

𝑑1
. (𝑥 − 𝑎1) 

the straight line through (𝑎1, 𝑎2) with gradient  
𝑑2

𝑑1
 

[In 3D:  𝜆 =
𝑥−𝑎1

𝑑1
=

𝑦−𝑎2

𝑑2
=

𝑧−𝑎3

𝑑3
 ] 

[Note: If the direction of (𝑑1
𝑑2

) is reversed, to give (−𝑑1
−𝑑2

), then the 

gradient remains the same, as 
−𝑑2

−𝑑1
=

𝑑2

𝑑1
 ] 

 

Example: The line through the points (1, 0, 1) and (0, 1, 0) 

𝑑 = (
0
1
0
) − (

1
0
1
) = (

−1
1

−1
)  

Hence  𝑟 = (
1
0
1
) + 𝜆 (

−1
1

−1
)   or (

1 − 𝜆
𝜆

1 − 𝜆
) 

 

and   𝜆 =
𝑥−1

−1
=

𝑦−0

1
=

𝑧−1

−1
      

 

 



 fmng.uk 

4 
 

Special cases 

Example 1:  
𝑥−2

3
=

𝑦−4

5
; 𝑧 = 6 

(
𝑥
𝑦
𝑧
) = (

2
4
6
) + 𝜆 (

3
5
0
)  

[Division by zero is undefined, so we cannot write  

𝑥−2

3
=

𝑦−4

5
=

𝑧−6

0
 ]  

The line is in the plane 𝑧 = 6 (parallel to the line 
𝑥−2

3
=

𝑦−4

5
 in the 

𝑥-𝑦 plane). 

Example 2:  
𝑥−2

3
= 𝜆; 𝑦 = 1; 𝑧 = 6 

(
𝑥
𝑦
𝑧
) = (

2
1
6
) + 𝜆 (

3
0
0
)  or  (

𝑥
𝑦
𝑧
) = (

2
1
6
) + 𝜆 (

1
0
0
)  

The line is parallel to the  𝑥-axis, and passes through the point 

(2,1,6) (or any point of the form (𝜇, 1,6)). 

 

(3) Intersection of two lines 

Example: To find the intersection of the lines 

  𝑟 = (
4

−2
1

) + 𝜆 (
−2
5

−3
)     and  𝑟 = (

7
9

−3
) + 𝜆 (

7
1
2
) , 

solve (
4

−2
1

) + 𝜆 (
−2
5

−3
) = (

7
9

−3
) + 𝜇 (

7
1
2
) for 𝜆 & 𝜇. 

If the lines don't meet, then a solution will not exist.  

Here 𝜆 & 𝜇 turn out to be 2 & − 1,  
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giving 𝑟 = (
4

−2
1

) + 2(
−2
5

−3
) = (

0
8

−5
) 

(or  (
7
9

−3
) − (

7
1
2
) ), 

so that the point of intersection is (0, 8, −5). 

 

(4) Direction Cosines 

If the direction vector of a line is  𝑑 = 𝑑1𝑖 + 𝑑2𝑗 + 𝑑3𝑘 , 

we can write 𝑑1 = |𝑑|𝑐𝑜𝑠𝜃1, so that the direction cosines are  

defined as  𝑙1(= 𝑐𝑜𝑠𝜃1) =
𝑑1

|𝑑|
 , 𝑙2 =

𝑑2

|𝑑|
   &  𝑙3 =

𝑑3

|𝑑|
  

and (

𝑙1
𝑙2
𝑙3

) is a unit vector 

[Direction cosines are usually applied in the 3D case, where there 

isn't a gradient as such.] 

Notes 

(i) The letters 𝑙,𝑚 and 𝑛 are often used instead of   𝑙1, 𝑙2 and 𝑙3. 

(ii) The direction ratios of a line are just  𝑑1, 𝑑2 and 𝑑3 (or any 3 

numbers in the same ratio). 

 

(5) Vector product form 

This only applies to  3D lines. 

r = a + 𝜆d  can be written as (𝑟 − 𝑎) × 𝑑 = 0 
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(since  𝑟 − 𝑎   and  𝑑  are parallel) 

or  𝑟 × 𝑑 = 𝑎 × 𝑑 

eg line through  (1, 0, 1) and (0, 1, 0): 

𝑑 = (
0
1
0
) − (

1
0
1
) = (

−1
1

−1
)    

𝑎 × 𝑑 = |

𝑖 1 −1

𝑗 0 1

𝑘 1 −1

| = −𝑖 + 𝑘 = (
−1
0
1

)  

Thus equation is   𝑟 × (
−1
1

−1
) = (

−1
0
1

) 

 

Note: Textbooks sometimes write the determinant with the 

elements transposed (it gives the same result though). 

 

To reconcile  𝑟 × (
−1
1

−1
) = (

−1
0
1

)  with 𝑟 = (
1 − 𝜆

𝜆
1 − 𝜆

): 

LHS = |
𝑖 𝑥 −1
𝑗 𝑦 1
𝑘 𝑧 −1

| = (−𝑦 − 𝑧)𝑖 − (−x + z)j + (x + y)k 

Hence (

−𝑦 − 𝑧
𝑥 − 𝑧
𝑥 + 𝑦

) = (
−1
0
1

) 

Let 𝑦 = 𝜆; then 𝑥 = 1 − 𝜆  and  𝑧 = 1 − 𝜆 

 

 


