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(1) Vector equation of a line 

(i) Note the distinction between: 

(a) the vector equation of the line passing through 𝐴 and 𝐵 

(sometimes abbreviated to "... the line 𝐴𝐵"; though strictly 

speaking it should read "... the line segment 𝐴𝐵 extended"), which 

is the position vector of a general point on the line, and  

(b) the vector 𝐴𝐵⃗⃗⃗⃗  ⃗, which is a vector in the direction of the line 

 

(ii) If  𝐴 and 𝐵 are points on the line, and 𝑑 is the direction of the 

line, then the following forms of the vector equation are possible: 

𝑟 = 𝑎 + 𝜆𝑑  (where 𝑎 = 𝑂𝐴⃗⃗ ⃗⃗  ⃗ ) 

𝑟 = 𝑎 + 𝜆(𝑏 − 𝑎)  

𝑟 = (1 − 𝜆)𝑎 + 𝜆𝑏   

[this can be considered to be a weighted average of 𝑎 and 𝑏] 

 

(iii) When asked for the vector equation of a line, it is essential to 

include the "𝑟 =". Note that 𝑟 can be replaced by (
𝑥
𝑦) or (

𝑥
𝑦
𝑧
) , as 

appropriate, and that the vector equation can be written as 2 or 3 

scalar equations. 

 

(2) Cartesian form of a line in 3D 

(a) The line  𝑟 = (
𝑥
𝑦
𝑧
) = (

2
4
6
) + 𝜆 (

3
5
2
)  can be written as 
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(𝜆 =) 
𝑥−2

3
=

𝑦−4

5
=

𝑧−6

2
  

[More generally, (
𝑥
𝑦
𝑧
) = (

𝑎1

𝑎2

𝑎3

) + 𝜆 (

𝑑1

𝑑2

𝑑3

) = (

𝑎1 + 𝜆𝑑1

𝑎2 + 𝜆𝑑2

𝑎3 + 𝜆𝑑3

) 

becomes  
𝑥−𝑎1

𝑑1
=

𝑦−𝑎2

𝑑2
=

𝑧−𝑎3

𝑑3
 ] 

(b) The line 𝑟 = (
𝑥
𝑦
𝑧
) = (

2
4
6
) + 𝜆 (

3
5
0
) would be written as 

𝑥−2

3
=

𝑦−4

5
 , 𝑧 = 6   (as  

𝑧−6

0
 is undefined) 

It represents a line in the plane 𝑧 = 6. 

(c) The line 𝑟 = (
𝑥
𝑦
𝑧
) = (

2
4
6
) + 𝜆 (

3
0
0
) could be written as 

𝜆 =
𝑥−2

3
, 𝑦 = 4 , 𝑧 = 6  

It represents the line parallel to the 𝑥-axis passing through the 

point (0,4,6). 

As 𝑥 can take any value, the form  𝑥 = 𝑘, 𝑦 = 4 , 𝑧 = 6 is 

preferable. 

 

(3) Scalar product 

(i) (
𝑎1

𝑎2
) . (

𝑏1

𝑏2
) = (𝑎1𝑖 + 𝑎2𝑗) . (𝑏1𝑖 + 𝑏2𝑗) 

= 𝑎1𝑏1𝑖. 𝑖 + 𝑎1𝑏2𝑖. 𝑗 + 𝑎2𝑏1𝑗. 𝑖 + 𝑎2𝑏2𝑗. 𝑗  

= 𝑎1𝑏1 + 0 + 0 + 𝑎2𝑏2  

= 𝑎1𝑏1 + 𝑎2𝑏2  
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(ii) Consider two line segments,  𝐴𝐵⃗⃗⃗⃗  ⃗ = (
1

−2
) and 𝐶𝐷⃗⃗⃗⃗  ⃗ = (

−3
5

) 

 

 

 

 

 

 

 

[the locations of the lines are not important; only their directions] 

Note that the gradients of 𝐴𝐵⃗⃗⃗⃗  ⃗ and 𝐶𝐷⃗⃗⃗⃗  ⃗ are 
−2

1
= −2  and 

5

−3
= −

5

3
 . 

We can find the angle 𝜃 between 𝐴𝐵⃗⃗⃗⃗  ⃗ and 𝐶𝐷⃗⃗⃗⃗  ⃗ as follows: 

𝐴𝐵⃗⃗⃗⃗  ⃗. 𝐶𝐷⃗⃗⃗⃗  ⃗ = |𝐴𝐵⃗⃗⃗⃗  ⃗||𝐶𝐷⃗⃗⃗⃗  ⃗|𝑐𝑜𝑠𝜃, 

giving  (
1

−2
) . (

−3
5

) = √12 + (−2)2√(−3)2 + 52 𝑐𝑜𝑠𝜃 

so that 𝑐𝑜𝑠𝜃 =
−3−10

√5√34
=

−13

√170
 

and hence 𝜃 = 175.601° = 175.6° (1dp) 

 

Now consider the angle 𝜙 between 𝐴𝐵⃗⃗⃗⃗  ⃗ and 𝐷𝐶⃗⃗⃗⃗  ⃗ = − (
−3
5

) = (
3

−5
) 

(note that the gradient of 𝐷𝐶⃗⃗⃗⃗  ⃗ is still −
5

3
 ). 

Then   𝐴𝐵⃗⃗⃗⃗  ⃗. 𝐷𝐶⃗⃗⃗⃗  ⃗ = |𝐴𝐵⃗⃗⃗⃗  ⃗||𝐷𝐶⃗⃗⃗⃗  ⃗|𝑐𝑜𝑠𝜙 = |𝐴𝐵⃗⃗⃗⃗  ⃗||𝐶𝐷⃗⃗⃗⃗  ⃗|𝑐𝑜𝑠𝜙, 
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so that  (
1

−2
) . (

3
−5

) = √5√34 𝑐𝑜𝑠𝜙 

and 𝑐𝑜𝑠𝜙 =
3+10

√5√34
=

13

√170
 

and hence 𝜙 = 180 − 175.6° = 4.4° (1dp) 

 

This is consistent with the diagram above. 

Note that, if asked to find the angle between the two lines, without 

any directions being specified (ie whether 𝐴𝐵⃗⃗⃗⃗  ⃗ or 𝐵𝐴⃗⃗⃗⃗  ⃗), it is 

customary to give the acute angle; ie 4.4° in this case. 

 

(iii) 𝑎. 𝑎 = (

𝑎1

𝑎2

𝑎3

) . (

𝑎1

𝑎2

𝑎3

) = 𝑎1
2 + 𝑎2

2 + 𝑎3
2 = |𝑎|2 

 

(4) Equation of a plane 

(a) Vector and Cartesian forms 

Referring to the diagram, where 𝐴 is a 

given point in the plane, and 𝑅 is a 

general point in the plane (with position 

vectors 𝑎 and 𝑟 , respectively), if 𝑛 is a 

normal to the plane, then 𝑟 − 𝑎 will be 

perpendicular to 𝑛, 

so that  (𝑟 − 𝑎). 𝑛 = 0  

⇒ 𝑟. 𝑛 = 𝑎. 𝑛 = 𝑑 (say) 

and so 𝑟. 𝑛 = 𝑑 , which is the ‘vector’ form of the eq’n of the plane 

⇒ 𝑛𝑥𝑥 + 𝑛𝑦𝑦 + 𝑛𝑧𝑧 = 𝑑 , which is the ‘Cartesian’ form 
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[Alternatively, if  𝑎 lies in the plane 𝑟. 𝑛 = 𝑑, 

then 𝑎. 𝑛 = 𝑑, so that  𝑟. 𝑛 = 𝑎. 𝑛 ] 

 

(b) Parametric form 

 

 

 

 

 

 

 

 

 

 

Referring to the diagrams, if 𝑏 & 𝑐 are direction vectors in the 

plane, then 𝑟 = 𝑎 + 𝜆𝑏 + 𝜇𝑐 

Notes  

(i) If 𝐵 & 𝐶 are two further points in the plane (such that 𝐴, 𝐵 & 𝐶 

are not on a straight line), then 𝑏 & 𝑐 can be obtained from 

𝑂𝐵⃗⃗ ⃗⃗  ⃗ − 𝑂𝐴⃗⃗ ⃗⃗  ⃗  and 𝑂𝐶⃗⃗⃗⃗  ⃗ − 𝑂𝐴⃗⃗ ⃗⃗  ⃗ , respectively. 

(ii) The vector form can be obtained by taking  𝑛 = 𝑏 × 𝑐  
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(Alternatively, eliminate 𝜆 and 𝜇 from the 3 scalar eq’ns making 

up (
𝑥
𝑦
𝑧
) = (

𝑎1

𝑎2

𝑎3

) + 𝜆 (

𝑏1

𝑏2

𝑏3

) + 𝜇 (

𝑐1
𝑐2

𝑐3

) , and hence form the Cartesian 

equation.) 

(iii) To convert from the Cartesian to the parametric form, let 

𝑥 = 𝑠  and  𝑦 = 𝑡 , to find 𝑧 in terms of 𝑠 and 𝑡, and giving 

(
𝑥
𝑦
𝑧
) =  (

0
0
?
) + 𝑠 (

1
0
?
) + 𝑡 (

0
1
?
)  

 

(c) ‘Unit normal’ form [my terminology] 

If the vector form is 𝑟. 𝑛 = 𝑑, and if 𝑛̂ =
𝑛

|𝑛|
 (so that 𝑛̂ has unit 

magnitude), then 𝑟. 𝑛̂ =
𝑑

|𝑛|
 , and 

𝑑

|𝑛|
 can be shown to be the 

shortest (perpendicular) distance of the plane from the Origin. 

Example 

Let 𝑃 be the plane 2𝑥 − 4𝑦 + 𝑧 = 3 

To find the distance of 𝑃 from the Origin, consider the line 𝐿 that 

is perpendicular to 𝑃 and passes through the Origin. Its equation 

is  (
𝑥
𝑦
𝑧
) = (

0
0
0
) + 𝜆 (

2
−4
1

)   

The intersection of 𝐿 and 𝑃 is obtained by substituting for 

𝑥, 𝑦 & 𝑧  in the eq’n of the plane, to give 

2(2𝜆) − 4(−4𝜆) + (𝜆) = 3 ⇒ 𝜆 =
3

|𝑛|
2 ,  

where |𝑛| = |
2

−4
1

| = √22 + (−4)2 + 12 
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Then the distance of 𝑃 from the Origin is the distance travelled 

along 𝐿 = 𝜆 |
2

−4
1

| =
3

|𝑛|
2 |𝑛| =

3

|𝑛|
  

 

(5) Angle between two planes 

The angle between two planes is the acute angle between the  

the lines having the direction vectors of the normals of the planes.  

This can be seen as follows: 

 

 

 

 

 

 

 

Referring to the example in the diagram, 𝜃 is the angle between 

the two normals 𝑛1 and 𝑛2, and can be found from their scalar 

product. If 𝜃 is obtuse (as in this case), then the angle between the 

planes is 𝛼 = 180 − 𝜃. This is the acute angle between the lines 

having the direction vectors of the normals.  

[Note that, whilst the angle between the two normals is obtuse (as 

each normal is pointing in a particular direction), if the normals 

are replaced with lines (with no arrows), then there are two 

possibilities for ‘the angle between the lines’: either the acute 

angle, or the obtuse angle.]  
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If either of the normals in the diagram is reversed in direction, 

then the angle between the normals is acute, and equals 180 − 𝜃.  

Once again, 𝛼 equals the acute angle between the lines having the 

direction vectors of the normals.  

(If both of the normals are reversed in direction, then the angle 

between the normals will equal 𝜃 again, as in the first case.) 

Thus, in all cases, the angle between the planes is equal to the 

acute angle between the lines having the direction vectors of the 

normals.  

 

(6) Angle between a line and a plane  

 

 

 

 

 

 

To determine the angle between a line (with direction 𝑑) and a 

plane (with normal 𝑛):  

(i) Find the acute angle 𝜃 between the lines with the direction 

vectors of 𝑑 & 𝑛 

(ii) Subtract 𝜃 from 90°, to give the required angle 𝛼 

[Note: Referring to the diagram, if we reverse either 𝑑 or 𝑛 , then 

the angle between 𝑑 and 𝑛 becomes obtuse, and the required 

acute angle is obtained by subtracting this obtuse angle from 

180°.] 
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(7) Vector perpendicular to a given (2D) vector 

(
−𝑏
𝑎

) is perpendicular to (
𝑎
𝑏
) 

 

(8) Intersection of two lines 

 (
𝑥
𝑦
𝑧
) = (

𝑎1

𝑎2

𝑎3

) + 𝜆 (

𝑑1

𝑑2

𝑑3

)  and  (
𝑥
𝑦
𝑧
) = (

𝑏1

𝑏2

𝑏3

) + μ(

𝑒1

𝑒2

𝑒3

): 

eliminate 𝜆 and μ from (

𝑎1

𝑎2

𝑎3

) + 𝜆 (

𝑑1

𝑑2

𝑑3

)  = (

𝑏1

𝑏2

𝑏3

) + μ(

𝑒1

𝑒2

𝑒3

) 

Note: If no solution exists (ie if the equations are not consistent), 

then the lines are skew. 

 

(9) Intersection of a line and a plane 

Point of intersection of the line 𝑟 = 𝑎 + 𝜆𝑑 and the plane  𝑟. 𝑛 =

𝑏. 𝑛   ⇒ (𝑎 + 𝜆𝑑). 𝑛 = 𝑏. 𝑛 , giving a value for 𝜆, and hence the 

required point on the line. 

 

(10) Line of intersection of two planes 

Method 1 

Substitute 𝑥 = 𝜆 into the cartesian equations of the two planes, 

and find 𝑦 and 𝑧 in terms of 𝜆, to give  

(
𝑥
𝑦
𝑧
) =  (

0
?
?
) + 𝜆 (

1
?
?
)  
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Method 2 

Find two points, 𝑎 and 𝑏 , that lie on both of the planes (and hence 

on the line); eg by setting 𝑥 = 0 (for one point) and 𝑦 = 0 (for 

another). 

The equation of the intersecting line is then 𝑟 = 𝑎 + 𝜆(𝑏 − 𝑎) 

Method 3 

Find a point that lies on both of the planes; then for the direction 

of the line, take the vector product of the normals of the two 

planes (as the line will be perpendicular to both of these). 

 

(11) Shortest distance from a point to a plane 

To find the shortest distance from the point 𝑝 to the plane 

𝑟. 𝑛 = 𝑑: 

Method 1 

Obtain the unit normal vector 𝑛̂ =
𝑛

|𝑛|
  

and rewrite 𝑟. 𝑛 = 𝑑  as  𝑟. 𝑛̂ = 𝑑′  , where  𝑑′ =
𝑑

|𝑛|
 

Then consider the line 𝑟 = 𝑝 + 𝜆𝑛̂ , and the point where this 

meets the plane; ie where (𝑝 + 𝜆𝑛̂). 𝑛̂ = 𝑑′   

The value of 𝜆 obtained from this eq'n gives the required distance: 

|𝜆|. 

Method 2 

Create the equation of the plane passing through 𝑝 , parallel to the 

plane 𝑟. 𝑛̂ = 𝑑′ , to give 𝑟. 𝑛̂ = 𝑒′ 
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Then the required distance is |𝑑′ − 𝑒′| 

Note: This is how the standard formula 
|𝑛1𝑝1+𝑛2𝑝2+𝑛3𝑝3−𝑑|

√𝑛1
2+𝑛2

2+𝑛3
2

  is 

derived: 

𝑑′ =
𝑑

√𝑛1
2+𝑛2

2+𝑛3
2
    and  𝑒′ = 𝑝. 𝑛̂ =

𝑛1𝑝1+𝑛2𝑝2+𝑛3𝑝3

√𝑛1
2+𝑛2

2+𝑛3
2

 

 

Method 3 

Find any point Q in the plane (eg by setting 𝑥 = 𝑦 = 0 in the 

cartesian form). 

 

The required distance will then be the projection of  𝑃𝑄⃗⃗⃗⃗  ⃗ onto 𝑛 

(the normal to the plane); namely   
|𝑃𝑄⃗⃗ ⃗⃗  ⃗.𝑛|

|𝑛|
 

 

(12) Distance between two parallel planes 

As for the shortest distance from a point to a plane, if the two 

planes are written in the form  𝑟. 𝑛̂ = 𝑑′ and  𝑟. 𝑛̂ = 𝑒′ 

(where  𝑛̂ =
𝑛

|𝑛|
 is the unit normal vector, and 𝑑′ =

𝑑

|𝑛|
 (and 

similarly for 𝑒′)),  

then the required distance is |𝑑′ − 𝑒′| 
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(13) Vector product 

𝑎 × 𝑏 = (𝑎1𝑖 +  𝑎2j + 𝑎3𝑘) × (𝑏1𝑖 +  𝑏2j + 𝑏3𝑘)  

= (𝑎2𝑏3 − 𝑎3𝑏2)𝑖 + (𝑎3𝑏1 − 𝑎1𝑏3)𝑗 + (𝑎1𝑏2 − 𝑎2𝑏1)𝑘 

= |
𝑎2 𝑎3

𝑏2 𝑏3
| 𝑖  −  |

𝑎1 𝑎3

𝑏1 𝑏3
| 𝑗  + |

𝑎1 𝑎2

𝑏1 𝑏2
| 𝑘 

= |

𝑖 𝑎1 𝑏1

𝑗 𝑎2 𝑏2

𝑘 𝑎3 𝑏3

| (or the transpose of this) 

 

(14) Shortest distance from a point to a line / distance 

between parallel lines 

If A and B are given points on the two lines, and 𝑑 is the common 

direction vector: 

 

 

Method 1 

Let C be the point on 𝑙1 with parameter 𝑘, so that 𝑐 = 𝑎 + 𝑘𝑑 (*) 

Then we require  𝑑. (𝑐 − 𝑏) = 0 

Solving this equation for 𝑘 and substituting for 𝑘 in (*) gives 𝑐, 

and the distance between the two lines is then |𝑐 − 𝑏|. 
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Method 2 

Having obtained the general point,  𝐶  on 𝑙1 in Method 1, we can 

minimise the distance BC by finding the stationary point of  𝐵𝐶2 

(ie where 
𝑑

𝑑𝑘
 (𝐵𝐶2) = 0) 

Method 3 

As 𝐵𝐶 = 𝐴𝐵𝑠𝑖𝑛𝜃,  𝐵𝐶 =
|𝐴𝐵⃗⃗ ⃗⃗  ⃗×𝑑|

|𝑑|
 

Method 4 (2D lines) 

The equivalent of the formula  
|𝑛1𝑏1+𝑛2𝑏2+𝑛3𝑏3−𝑑|

√𝑛1
2+𝑛2

2+𝑛3
2

  for the shortest 

distance from a point to a plane (see above) gives 

|𝑎𝑥1+𝑏𝑦1−𝑐|

√𝑎2+𝑏2
  as the shortest distance from the point (𝑥1, 𝑦1) to the 

line  𝑎𝑥 + 𝑏𝑦 = 𝑐  

Demonstration 

We first establish the distance of a 2D line from the Origin. 

 

 

 

 

 

 

 

 

Referring to the diagram, 𝑎𝑥 + 𝑏𝑦 = 𝑐 ⇒ 𝑦 =
𝑐

𝑏
−

𝑎

𝑏
𝑥 , 
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so that 𝑡𝑎𝑛𝜃 = −
𝑎

𝑏
 

and 𝑑 =
𝑐

𝑏
 𝑐𝑜𝑠𝜃 =

𝑐

𝑏
.

1

√𝑡𝑎𝑛2𝜃+1
=

𝑐

𝑏
 .

1

√𝑎2

𝑏2+1

=
𝑐

√𝑎2+𝑏2
 

So if the line 𝑎𝑥 + 𝑏𝑦 = 𝑐  is written in the form 

 
1

√𝑎2+𝑏2
(𝑎𝑥 + 𝑏𝑦) =

𝑐

√𝑎2+𝑏2
 , then the right-hand side is the  

distance of the line from the Origin. 

Now consider the line through the point (𝑥1, 𝑦1) that is parallel to  

𝑎𝑥 + 𝑏𝑦 = 𝑐:   

Suppose that it has eq’n 𝑎𝑥 + 𝑏𝑦 = 𝑐′ (as this line has the required 

gradient).  

Then 𝑎𝑥1 + 𝑏𝑦1 = 𝑐′, and so the required eq’n is  

𝑎𝑥 + 𝑏𝑦 = 𝑎𝑥1 + 𝑏𝑦1  

and its distance from the Origin is  
𝑎𝑥1+𝑏𝑦1

√𝑎2+𝑏2
 

Hence the shortest distance from the point (𝑥1, 𝑦1) to the line  

𝑎𝑥 + 𝑏𝑦 = 𝑐 (which equals the distance between the two lines) 

equals  |
𝑎𝑥1+𝑏𝑦1

√𝑎2+𝑏2
−

𝑐

√𝑎2+𝑏2
| =

|𝑎𝑥1+𝑏𝑦1−𝑐|

√𝑎2+𝑏2
 

 

(15) Vector product form of a line 

(𝑟 − 𝑎) × 𝑑 = 0  or  𝑟 × 𝑑 = 𝑎 × 𝑑 

 

(16) Vector perpendicular to two vectors 

To find a vector perpendicular to the (3D) vectors 𝑎 and 𝑏: 
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Method 1 

𝑎 × 𝑏  

Method 2 

Let 𝑑 = (

𝑑1

𝑑2

𝑑3

) be the required vector. 

Then eliminate two of 𝑑1, 𝑑2 & 𝑑3  from  𝑑. 𝑎 = 0 and  𝑑. 𝑏 = 0   (*) 

to give a direction vector in terms of parameter 𝑑1, 𝑑2 𝑜𝑟 𝑑3. 

eg (

𝑑1

2𝑑1

3𝑑1

)  , which is equivalent to the direction vector (
1
2
3
) 

 

(17) Shortest distance between two skew lines 

 

 

(𝑙1:   𝑟 = 𝑎 + λ𝑏    &  𝑙2:   𝑟 = 𝑐 + μ𝑑) 

Method 1 

|(𝑐 − 𝑎).
(𝑏×𝑑)

|𝑏×𝑑|
|    
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Justification 

If a cuboid is drawn so that 𝑙1 lies along one edge, as shown in the 

diagram, then by a choice of a suitable length, width and depth for 

the cuboid,  𝑙2 will lie along the diagonal of the back face, as 

shown. 

𝑋𝑌 is then the required distance (with 𝑋𝑌⃗⃗⃗⃗  ⃗ being perpendicular to 

both lines), and this is equal to 𝐴𝐸. 

Triangle 𝐴𝐸𝐶 is right-angled,  

and 𝐴𝐸 = 𝐴𝐶𝑐𝑜𝑠𝐶𝐴̂𝐸 = |
𝐴𝐶⃗⃗⃗⃗  ⃗.𝐴𝐸⃗⃗⃗⃗  ⃗

|𝐴𝐸⃗⃗⃗⃗  ⃗|
|  

Now, 𝑏 × 𝑑 is perpendicular to both 𝑏 & 𝑑 , and therefore has the 

same direction as 𝑋𝑌⃗⃗⃗⃗  ⃗ and 𝐴𝐸⃗⃗⃗⃗  ⃗, so that  
𝐴𝐶⃗⃗⃗⃗  ⃗.𝐴𝐸⃗⃗⃗⃗  ⃗

|𝐴𝐸⃗⃗⃗⃗  ⃗|
=

𝐴𝐶⃗⃗⃗⃗  ⃗.(𝑏×𝑑)

|(𝑏×𝑑)|
 

and 𝐴𝐸 =|(𝑐 − 𝑎).
(𝑏×𝑑)

|𝑏×𝑑|
|    

 

Note: Two lines in 3D will intersect if    (𝑐 − 𝑎). (𝑏 × 𝑑) = 0 

 

Method 2 

Suppose that 𝑋 and 𝑌 have position vectors  𝑟 = 𝑎 + 𝜆𝑋𝑏  and 

𝑟 = 𝑐 + 𝜇𝑌𝑑 , so that  𝑋𝑌⃗⃗⃗⃗  ⃗ = (𝑐 + 𝜇𝑌𝑑) − (𝑎 + 𝜆𝑋𝑏)  

As 𝑋𝑌⃗⃗⃗⃗  ⃗ is perpendicular to both lines, 

𝑋𝑌⃗⃗⃗⃗  ⃗. 𝑏 = 𝑋𝑌⃗⃗⃗⃗  ⃗. 𝑑 = 0,  

and solving these eq’ns enables 𝜆𝑋 & 𝜇𝑌 , and hence |𝑋𝑌⃗⃗⃗⃗  ⃗|, to be 

determined. 
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Method 3 

Again, suppose that 𝑋 and 𝑌 have position vectors 

𝑟 = 𝑎 + 𝜆𝑋𝑏  and  𝑟 = 𝑐 + 𝜇𝑌𝑑 

Then  𝑂𝑌⃗⃗⃗⃗  ⃗ = 𝑂𝑋⃗⃗ ⃗⃗  ⃗ + 𝑋𝑌⃗⃗⃗⃗  ⃗, so that 

𝑐 + 𝜇𝑌𝑑 = 𝑎 + 𝜆𝑋𝑏 + 𝑘𝑛 (*) 

where  𝑛 = 𝑏 × 𝑑 (as 𝑏 × 𝑑 is perpendicular to both 𝑏 & 𝑑 , and 

therefore has the same direction as 𝑋𝑌⃗⃗⃗⃗  ⃗), and then 𝑋𝑌 = 𝑘|𝑛| 

Then (*) gives 3 simultaneous equations in 𝜆𝑋, 𝜇𝑌 & 𝑘: 

(

𝑐1 + 𝜇𝑌𝑑1

𝑐2 + 𝜇𝑌𝑑2

𝑐3 + 𝜇𝑌𝑑3

) = (

𝑎1 + 𝜆𝑋𝑏1 + 𝑘𝑛1

𝑎2 + 𝜆𝑋𝑏2 + 𝑘𝑛2

𝑎3 + 𝜆𝑋𝑏3 + 𝑘𝑛3

)  , from which 𝑘 can be found,  

and then  𝑋𝑌 = 𝑘|𝑏 × 𝑑|  

 

 


