Vectors Q8 (3/7/23)

Find the acute angle between the line $\frac{x-4}{-3}=\frac{y+2}{5}, z=-2$ and the plane $2 x-z=7$.

Solution

The angle between the direction vector of the line and the normal to the plane is given by

$$
\begin{aligned}
& \left(\begin{array}{c}
-3 \\
5 \\
0
\end{array}\right) \cdot\left(\begin{array}{c}
2 \\
0 \\
-1
\end{array}\right)=\sqrt{(-3)^{2}+5^{2}+0^{2}} \sqrt{2^{2}+0^{2}+(-1)^{2}} \cos \theta \\
& \Rightarrow-6=\sqrt{34} \sqrt{5} \cos \theta \Rightarrow \cos \theta=-\frac{6}{\sqrt{170}} \Rightarrow \theta=117.399=117.4^{\circ}
\end{aligned}
$$

(1dp) [this is usually the preferred degree of accuracy for an angle given in degrees]

This means that the acute angle between these two directions is $180-117.4=62.6$, and the angle between the plane itself and the line is therefore $90-62.6=27.4^{\circ}$

