Vectors Q6 (3/7/23)

Find a vector equation of the line that passes through the point
$(1,2)$ and is perpendicular to the line $\underline{r}=\binom{3}{4}+\lambda\binom{4}{-1}$

Solution

Method 1

The gradient of the given line is $\frac{-1}{4}$, so that the gradient of the perpendicular line is 4 .
Then a vector equation of the required line is
$\underline{r}=\binom{1}{2}+\lambda\binom{1}{4}$

Method 2 (much longer, but good practice!)
Let P be the intersection of the given line (L, say) and the perpendicular line through $Q(1,2)$. Then P can be represented as $\binom{3+4 \lambda}{4-\lambda}$, for some λ to be determined.
Then, as L is perpendicular to QP, $\binom{4}{-1} \cdot\binom{3+4 \lambda-1}{4-\lambda-2}=0$ [noting that $\binom{4}{-1}$ is the direction vector of L; not to be confused with $\binom{3+4 \lambda}{4-\lambda}$, which the position vector of a point on L]
so that $4(2+4 \lambda)-(2-\lambda)=0$,
and hence $17 \lambda+6=0$, and $\lambda=-\frac{6}{17}$
Thus P is $\binom{3+4\left(-\frac{6}{17}\right)}{4-\left(-\frac{6}{17}\right)}=\frac{1}{17}\binom{27}{74}$
And a vector equation of the line through P and Q is
$\underline{r}=\binom{1}{2}+\lambda\left[\binom{1}{2}-\frac{1}{17}\binom{27}{74}\right]$
or $\underline{r}=\binom{1}{2}+\frac{\lambda}{17}\binom{17-27}{34-74}=\binom{1}{2}+\frac{\lambda}{17}\binom{-10}{-40}$
or $\underline{r}=\binom{1}{2}+\mu\binom{1}{4}$

