Vectors Q2 (3/7/23)

Find the shortest distance between the lines

$$
\frac{x-2}{4}=\frac{y-1}{3}=\frac{z+3}{2} \text { and } \frac{x+5}{7}=\frac{y}{1}=\frac{z-1}{3}
$$

Solution

[Note: The following method is probably the quickest way of finding the shortest distance, but doesn't generate the points on the lines that are closest.]

Shortest distance, $D=\left|\frac{\left(\underline{d_{1} \times \underline{d}_{2}}\right) \cdot\left(\underline{a}_{1}-\underline{a}_{2}\right)}{\left|\underline{d}_{1} \times \underline{d}_{2}\right|}\right|$
where $\underline{d}_{1}=\left(\begin{array}{l}4 \\ 3 \\ 2\end{array}\right), \underline{d}_{2}=\left(\begin{array}{l}7 \\ 1 \\ 3\end{array}\right), \underline{a}_{1}=\left(\begin{array}{c}2 \\ 1 \\ -3\end{array}\right), \underline{a}_{2}=\left(\begin{array}{c}-5 \\ 0 \\ 1\end{array}\right)$
Then $\underline{d}_{1} \times \underline{d}_{2}=\left|\begin{array}{lll}\underline{i} & 4 & 7 \\ \underline{j} & 3 & 1 \\ \underline{k} & 2 & 3\end{array}\right|=\left(\begin{array}{c}7 \\ 2 \\ -17\end{array}\right)$ and $\underline{a}_{1}-\underline{a}_{2}=\left(\begin{array}{c}7 \\ 1 \\ -4\end{array}\right)$
so that $D=\left|\frac{7(7)+2(1)+(-17)(-4)}{\sqrt{7^{2}+2^{2}+(-17)^{2}}}\right|=\left|\frac{119}{\sqrt{342}}\right|=\frac{119}{\sqrt{342}}$

