Vectors Q17 (3/7/23)

Find the line that is the reflection of the line $\frac{x-2}{3}=\frac{y}{4}=\frac{z+1}{1}$ in the plane $x-2 y+z=4$

Solution

Let the intersection of the line and the plane be P, and suppose that Q is some other point on the line. Then we can find the reflection of Q in the plane (Q ' say), by dropping a perpendicular from Q onto the plane, and then the required line will pass through P and Q^{\prime}.

Writing the equation of the line as $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}2 \\ 0 \\ -1\end{array}\right)+\lambda\left(\begin{array}{l}3 \\ 4 \\ 1\end{array}\right)$ and substituting into the equation of the plane:
$(2+3 \lambda)-2(4 \lambda)+(-1+\lambda)=4 \Rightarrow-4 \lambda=3 ; \lambda=-\frac{3}{4}$
so that P is $\left(\begin{array}{c}2 \\ 0 \\ -1\end{array}\right)-\frac{3}{4}\left(\begin{array}{l}3 \\ 4 \\ 1\end{array}\right)=\left(\begin{array}{c}-\frac{1}{4} \\ -3 \\ -\frac{7}{4}\end{array}\right)$
Setting $\lambda=1$ (say), we can take Q to be $\left(\begin{array}{c}2 \\ 0 \\ -1\end{array}\right)+\left(\begin{array}{l}3 \\ 4 \\ 1\end{array}\right)=\left(\begin{array}{l}5 \\ 4 \\ 0\end{array}\right)$
Now consider the perpendicular line dropped from Q onto the plane. Its direction vector is that of the normal to the plane, and so it has equation

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
5 \\
4 \\
0
\end{array}\right)+\lambda\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)
$$

Let R be the point where the perpendicular line intersects the plane. Substituting into the equation of the plane gives:

$$
(5+\lambda)-2(4-2 \lambda)+(\lambda)=4 \Rightarrow 6 \lambda=7 ; \lambda=\frac{7}{6}
$$

So R is $\left(\begin{array}{l}5 \\ 4 \\ 0\end{array}\right)+\frac{7}{6}\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)$, and Q^{\prime} will be $\left(\begin{array}{l}5 \\ 4 \\ 0\end{array}\right)+2\left(\begin{array}{c}\frac{7}{6}\end{array}\right)\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)=\left(\begin{array}{c}\frac{22}{3} \\ -\frac{2}{3} \\ \frac{7}{3}\end{array}\right)$
Then , as P is $\left(\begin{array}{c}-\frac{1}{4} \\ -3 \\ -\frac{7}{4}\end{array}\right)$, the equation of the reflected line will be:

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-\frac{1}{4} \\
-3 \\
-\frac{7}{4}
\end{array}\right)+\lambda\left[\left(\begin{array}{c}
\frac{22}{3} \\
-\frac{2}{3} \\
\frac{7}{3}
\end{array}\right)-\left(\begin{array}{c}
-\frac{1}{4} \\
-3 \\
-\frac{7}{4}
\end{array}\right)\right]=\frac{1}{12}\left(\begin{array}{c}
-3+\lambda(88+3) \\
-36+\lambda(-8+36) \\
-21+\lambda(28+21)
\end{array}\right)
$$

$$
\frac{1}{12}\left(\begin{array}{c}
-3+91 \lambda \\
-36+28 \lambda \\
-21+49 \lambda
\end{array}\right)
$$

or, in cartesian form: $\frac{x+\frac{3}{12}}{91}=\frac{y+\frac{36}{12}}{28}=\frac{z+\frac{21}{12}}{49}$ or $\frac{x+\frac{3}{12}}{13}=\frac{y+\frac{36}{12}}{4}=\frac{z+\frac{21}{12}}{7}$

