Vectors Q16 (3/7/23)

Find the shortest distance between the point $(4,-2,3)$ and the line $\underline{r}=\left(\begin{array}{c}7 \\ 5 \\ -1\end{array}\right)+\lambda\left(\begin{array}{c}3 \\ -6 \\ 4\end{array}\right)$, leaving the answer in surd form.

Solution

Method 1

Shortest distance $D=\frac{|(\underline{p}-\underline{a}) \times \underline{d}|}{|\underline{d}|}$ where $\underline{p}=\left(\begin{array}{c}4 \\ -2 \\ 3\end{array}\right), \underline{a}=\left(\begin{array}{c}7 \\ 5 \\ -1\end{array}\right)$ \&
$\underline{d}=\left(\begin{array}{c}3 \\ -6 \\ 4\end{array}\right)$
$\underline{(p-\underline{a}}) \times \underline{d}=\left|\begin{array}{ccc}\underline{i} & -3 & 3 \\ \underline{j} & -7 & -6 \\ \underline{k} & 4 & 4\end{array}\right|=\left(\begin{array}{c}-4 \\ 24 \\ 39\end{array}\right)$
So $D=\frac{\sqrt{(-4)^{2}+24^{2}+39^{2}}}{\sqrt{3^{2}+(-6)^{2}+4^{2}}}=\frac{\sqrt{2113}}{\sqrt{61}}=\sqrt{\frac{2113}{61}}$

Method 2

Let $\overrightarrow{O P}=\left(\begin{array}{c}4 \\ -2 \\ 3\end{array}\right)$ and let M be the point on the line closest to P , so that $\overrightarrow{O M}=\left(\begin{array}{c}7+3 \lambda \\ 5-6 \lambda \\ -1+4 \lambda\end{array}\right)$, for some λ to be determined.
We require $\overrightarrow{P M} \cdot \underline{d}=0$,
so that $\left(\begin{array}{c}7+3 \lambda-4 \\ 5-6 \lambda-(-2) \\ -1+4 \lambda-3\end{array}\right) \cdot\left(\begin{array}{c}3 \\ -6 \\ 4\end{array}\right)=0$
$\Rightarrow 3(3+3 \lambda)-6(7-6 \lambda)+4(-4+4 \lambda)=0$
$\Rightarrow-49+61 \lambda=0 \Rightarrow \lambda=\frac{49}{61}$

The shortest distance $D=|\overrightarrow{P M}|$
where $\overrightarrow{P M}=\left(\begin{array}{c}7+3 \lambda-4 \\ 5-6 \lambda-(-2) \\ -1+4 \lambda-3\end{array}\right)=\left(\begin{array}{c}3+3 \lambda \\ 7-6 \lambda \\ -4+4 \lambda\end{array}\right)$

$$
\begin{aligned}
& \text { So } D^{2}=\left(3+\frac{147}{61}\right)^{2}+\left(7-\frac{294}{61}\right)^{2}+\left(-4+\frac{196}{61}\right)^{2} \\
& =\frac{1}{61^{2}}\left(330^{2}+133^{2}+(-48)^{2}\right) \\
& =\frac{128893}{61^{2}}=\frac{2113}{61} \\
& \text { and } D=\sqrt{\frac{2113}{61}}
\end{aligned}
$$

