Vector Product (8 pages; 4/8/18)

(1) The vector (or 'cross') product of the (3D) vectors \underline{a} and \underline{b} is a vector that is perpendicular to the plane containing \underline{a} and \underline{b} , and has magnitude $|a||b|sin\theta$, where θ is the angle between \underline{a} and \underline{b} .

Referring to the diagram, $\underline{a} \times \underline{b} = |\underline{a}| |\underline{b}| \sin\theta \, \underline{\hat{n}} \, (\, \underline{\hat{n}} \, \text{ being a unit vector, with the direction shown in the diagram).}$

Note: One application of the vector product is in the more general treatment of moments: the moment Fd becomes $\underline{F} \times \underline{d}$

(2) The direction of $\underline{\hat{n}}$ can be obtained from the 'right-hand rule', where the curled fingers point in the direction of increasing θ (\underline{a} to \underline{b}), and the thumb points in the direction of $\underline{\hat{n}}$.

So, if \underline{a} and \underline{b} are reversed, the direction of $\underline{\hat{n}}$ is reversed, and hence $\underline{b} \times \underline{a} = -\underline{a} \times \underline{b}$.

(3) It follows from the above that:

$$\underline{i} \times \underline{i} = \underline{j} \times \underline{j} = \underline{k} \times \underline{k} = \underline{0}$$

$$\underline{i} \times \underline{j} = \underline{k}, \ \underline{j} \times \underline{k} = \underline{i}, \ \underline{k} \times \underline{i} = \underline{j}$$

$$\underline{j} \times \underline{i} = -\underline{k}, \ \underline{k} \times \underline{j} = -\underline{i}, \ \underline{i} \times \underline{k} = -\underline{j}$$

(4) Whilst the scalar product provides a test for vectors being perpendicular, the vector product provides a test for their being parallel: if $\underline{a} \times \underline{b} = 0$, then \underline{a} and \underline{b} are parallel (assuming that neither is the zero vector); ie $\underline{b} = \lambda \underline{a}$

(5) Assuming that the distributive law applies to the vector product (which it does),

$$\begin{pmatrix} a_{1}\underline{i} + a_{2}\underline{j} + a_{3}\underline{k} \end{pmatrix} \times \begin{pmatrix} b_{1}\underline{i} + b_{2}\underline{j} + b_{3}\underline{k} \end{pmatrix}$$

$$= (a_{2}b_{3} - a_{3}b_{2})\underline{i} + (a_{3}b_{1} - a_{1}b_{3})\underline{j} + (a_{1}b_{2} - a_{2}b_{1})\underline{k}$$

$$= \begin{vmatrix} a_{2} & a_{3} \\ b_{2} & b_{3} \end{vmatrix} |\underline{i} - \begin{vmatrix} a_{1} & a_{3} \\ b_{1} & b_{3} \end{vmatrix} |\underline{j} + \begin{vmatrix} a_{1} & a_{2} \\ b_{1} & b_{2} \end{vmatrix} |\underline{k}$$

$$= \begin{vmatrix} \underline{i} & a_{1} & b_{1} \\ \underline{j} & a_{2} & b_{2} \\ \overline{k} & a_{3} & b_{3} \end{vmatrix} \text{ or } \begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \end{vmatrix}$$

Note: The \underline{i} component $(a_2b_3 - a_3b_2)$ involves only 2s & 3s; the 1st term (23) is in the 'forwards' direction; the 2nd (32) is in the 'backwards' direction.

Example

$$\begin{pmatrix} 4\underline{i} + 3\underline{j} + 2\underline{k} \end{pmatrix} \times \begin{pmatrix} 2\underline{i} - \underline{j} + 5\underline{k} \end{pmatrix}$$

$$= \begin{pmatrix} 4\\3\\2 \end{pmatrix} \times \begin{pmatrix} 2\\-1\\5 \end{pmatrix}$$

$$= \begin{vmatrix} \underline{i} & 4 & 2\\\underline{j} & 3 & -1\\\underline{k} & 2 & 5 \end{vmatrix}$$

$$= \begin{vmatrix} 3\\2 & 5 \end{vmatrix} | \underline{i} - \begin{vmatrix} 4\\2 & 5 \end{vmatrix} | \underline{j} + \begin{vmatrix} 4\\3 & -1 \end{vmatrix} | \underline{k}$$

$$= 17\underline{i} - 16\underline{j} - 10\underline{k}$$

Check:

We expect $17\underline{i} - 16\underline{j} - 10\underline{k}$ to be perpendicular to both of the original vectors.

$$\begin{pmatrix} 17\\ -16\\ -10 \end{pmatrix} \cdot \begin{pmatrix} 4\\ 3\\ 2 \end{pmatrix} = 68 - 48 - 20 = 0 \begin{pmatrix} 17\\ -16\\ -10 \end{pmatrix} \cdot \begin{pmatrix} 2\\ -1\\ 5 \end{pmatrix} = 34 + 16 - 50 = 0$$

Example: Find a unit vector perpendicular to the vectors $4\underline{i} + 3\underline{j} + 2\underline{k}$ and $2\underline{i} - \underline{j} + 5\underline{k}$

Solution

$$\left|17\underline{i} - 16\underline{j} - 10\underline{k}\right| = \sqrt{17^2 + (-16)^2 + (-10)^2} = \sqrt{645},$$

so that the required unit vector is

fmng.uk

$$\frac{1}{\sqrt{645}}(17\underline{i} - 16\underline{j} - 10\underline{k})$$

(6) The vector product can't properly be used to find the angle between two vectors.

Example: Find the angle between $\underline{a} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ and $\underline{b} = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$

Method A: scalar product

 $\underline{a} \cdot \underline{b} = |\underline{a}| |\underline{b}| \cos\theta$ Also, $\underline{a} \cdot \underline{b} = \begin{pmatrix} 1\\1\\1 \end{pmatrix} \cdot \begin{pmatrix} 1\\2\\4 \end{pmatrix} = 1 + 2 + 4 = 7$

So $cos\theta = \frac{7}{\sqrt{3}\sqrt{21}} = \frac{\sqrt{7}}{3} \Rightarrow \theta = 0.49088 \text{ (5sf)}$

Method B: vector product

$$|\underline{a} \times \underline{b}| = |\underline{a}||\underline{b}||sin\theta|$$

[To make any progress, we have to consider the magnitude of the vector product. But this leads to spurious solutions.]

Also,
$$\begin{pmatrix} 1\\1\\1 \end{pmatrix} \times \begin{pmatrix} 1\\2\\4 \end{pmatrix} = \begin{vmatrix} \underline{i} & 1 & 1\\ \underline{j} & 1 & 2\\ \underline{k} & 1 & 4 \end{vmatrix} = \begin{pmatrix} 2\\-3\\1 \end{pmatrix}$$

so that $|\underline{a} \times \underline{b}| = \sqrt{4+9+1} = \sqrt{14}$

and $|sin\theta| = \frac{\sqrt{14}}{\sqrt{3}\sqrt{21}} = \frac{\sqrt{2}}{3}$

$$\Rightarrow \sin\theta = \frac{\sqrt{2}}{3}, \text{ so that } \theta = 0.49088 \text{ or } \pi - 0.49088$$

or $\sin\theta = -\frac{\sqrt{2}}{3}, \text{ so that } \theta = -0.49088 \text{ or } \pi - (-0.49088)$

We know, from using the scalar product, that $\theta = 0.49088$ is the acute angle between \underline{a} and \underline{b} . $\theta = -0.49088$ arises because $|\underline{b} \times \underline{a}| = |\underline{a} \times \underline{b}|$. With $\underline{b} \times \underline{a}$ we are just measuring the angle in the opposite direction, so once again the required angle is 0.49088.

 $\theta = \pi - 0.49088$ arises from $\underline{b} \times (-\underline{a})$, and so there is an ambiguity (from the information we have, $\pi - 0.49088$ could be the required angle) - see the diagrams below, where $\alpha = 0.49088$

 $\theta = \pi - (-0.49088) = \pi + 0.49088$ arises from $(-\underline{a}) \times \underline{b}$, and the required angle would be $2\pi - (\pi + 0.49088) = \pi - 0.49088$ again.

 α arises from <u> $a \times b$ </u>

 $\pi - \alpha$ arises from $\underline{b} \times (-\underline{a})$

 $\pi + \alpha$ arises from $(-\underline{a}) \times \underline{b}$

[There are other possibilities; eg $(-\underline{a}) \times (-\underline{b})$ and $(-\underline{b}) \times \underline{a}$, but they produce the same angles.]

In conclusion, if the vector product reveals that $|sin\theta| = k$, then the angle between the vectors could be either $sin^{-1}k$ or $\pi - sin^{-1}k$. If only the acute angle between the two vectors is required, then the answer is $sin^{-1}k$.

(7) Areas

(i) Triangle

$$= \frac{1}{2} |\underline{a}| |\underline{b}| \sin\theta$$
$$= \frac{1}{2} |\underline{a} \times \underline{b}|$$

Example: Find the area of the triangle with corners A (1,2,3),

B (4,5,6) & C (9,8,7)

Solution

$$\overrightarrow{AB} = \begin{pmatrix} 3\\3\\3 \end{pmatrix} \& \overrightarrow{AC} = \begin{pmatrix} 8\\6\\4 \end{pmatrix}$$

$$\operatorname{Area} = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}| = \frac{1}{2} | \begin{vmatrix} \underline{i} & 3 & 8\\ \underline{j} & 3 & 6\\ \underline{k} & 3 & 4 \end{vmatrix} |$$

$$= \frac{1}{2} |-6\underline{i} + 12\underline{j} - 6\underline{k}|$$

$$= \frac{1}{2} \times 6 \times |\underline{i} - 2\underline{j} + \underline{k}| = 3 \times \sqrt{1 + 4 + 1} = 3\sqrt{6}$$

(ii) Parallelogram
=
$$|(\underline{b} - \underline{a}) \times (\underline{d} - \underline{a})|$$

[Area is twice that of the triangle ABD]

$$= |\underline{b} \times \underline{d} - \underline{b} \times \underline{a} - \underline{a} \times \underline{d} + \underline{a} \times \underline{a}|$$
$$= |\underline{a} \times \underline{b} + \underline{b} \times \underline{d} + \underline{d} \times \underline{a}|$$

[Note that ABD is anti-clockwise.]

(8) Proof that the vector product is distributive over vector addition

ie that
$$\underline{a} \times (\underline{b} + \underline{c}) = (\underline{a} \times \underline{b}) + (\underline{a} \times \underline{c})$$

or that $\underline{a} \times (\underline{b} + \underline{c}) - (\underline{a} \times \underline{b}) - (\underline{a} \times \underline{c}) = 0$
We will show that $\underline{r} \cdot [\underline{a} \times (\underline{b} + \underline{c}) - (\underline{a} \times \underline{b}) - (\underline{a} \times \underline{c})] = 0$ for
any \underline{r} (which implies the required result)
LHS = $\underline{r} \cdot [\underline{a} \times (\underline{b} + \underline{c})] - \underline{r} \cdot (\underline{a} \times \underline{b}) - \underline{r} \cdot (\underline{a} \times \underline{c})$
by distributivity of the scalar product over vector addition
 $= (\underline{b} + \underline{c}) \cdot (\underline{r} \times \underline{a}) - \underline{b} \cdot (\underline{r} \times \underline{a}) - \underline{c} \cdot (\underline{r} \times \underline{a})$, by cyclic interchange

$$= \underline{b}.(\underline{r} \times \underline{a}) + \underline{c}.(\underline{r} \times \underline{a}) - \underline{b}.(\underline{r} \times \underline{a}) - \underline{c}.(\underline{r} \times \underline{a})$$

by distributivity of scalar product

$$= 0$$

(9) To find a vector perpendicular to a given 3D vector $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$: just take the vector product with eg $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, to give $\begin{pmatrix} 0 \\ c \\ -b \end{pmatrix}$ [as $\underline{a} \times \underline{b}$ will be perpendicular to \underline{a}]

[As can be seen,
$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} \cdot \begin{pmatrix} 0 \\ c \\ -b \end{pmatrix} = 0$$
]