Vector Product (8 pages; 4/8/18)
(1) The vector (or 'cross') product of the (3D) vectors \underline{a} and \underline{b} is a vector that is perpendicular to the plane containing \underline{a} and \underline{b}, and has magnitude $|a||b| \sin \theta$, where θ is the angle between \underline{a} and \underline{b}.

Referring to the diagram, $\underline{a} \times \underline{b}=|\underline{a}||\underline{b}| \sin \theta \underline{\hat{n}}(\underline{\hat{n}}$ being a unit vector, with the direction shown in the diagram).

Note: One application of the vector product is in the more general treatment of moments: the moment $F d$ becomes $\underline{F} \times \underline{d}$
(2) The direction of $\underline{\hat{n}}$ can be obtained from the 'right-hand rule', where the curled fingers point in the direction of increasing θ (\underline{a} to \underline{b}), and the thumb points in the direction of $\underline{\hat{n}}$.

So, if \underline{a} and \underline{b} are reversed, the direction of $\underline{\hat{n}}$ is reversed, and hence $\underline{b} \times \underline{a}=-\underline{a} \times \underline{b}$.
(3) It follows from the above that:
$\underline{i} \times \underline{i}=\underline{j} \times \underline{j}=\underline{k} \times \underline{k}=\underline{0}$
$\underline{i} \times \underline{j}=\underline{k}, \underline{j} \times \underline{k}=\underline{i}, \underline{k} \times \underline{i}=\underline{j}$
$\underline{j} \times \underline{i}=-\underline{k}, \underline{k} \times \underline{j}=-\underline{i}, \underline{i} \times \underline{k}=\underline{-j}$
(4) Whilst the scalar product provides a test for vectors being perpendicular, the vector product provides a test for their being parallel: if $\underline{a} \times \underline{b}=0$, then \underline{a} and \underline{b} are parallel (assuming that neither is the zero vector); ie $\underline{b}=\lambda \underline{a}$
(5) Assuming that the distributive law applies to the vector product (which it does),

$$
\begin{aligned}
& \left(a_{1} \underline{i}+a_{2} \underline{j}+a_{3} \underline{k}\right) \times\left(b_{1} \underline{i}+b_{2} \underline{j}+b_{3} \underline{k}\right) \\
& =\left(\mathrm{a}_{2} \mathrm{~b}_{3}-\mathrm{a}_{3} \mathrm{~b}_{2}\right) \underline{i}+\left(a_{3} b_{1}-a_{1} b_{3}\right) \underline{j}+\left(\mathrm{a}_{1} \mathrm{~b}_{2}-\mathrm{a}_{2} \mathrm{~b}_{1}\right) \underline{k} \\
& =\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \underline{i}-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \underline{j}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \underline{k} \\
& =\left|\begin{array}{lll}
\underline{i} & \mathrm{a}_{1} & \mathrm{~b}_{1} \\
\underline{j} & \mathrm{a}_{2} & \mathrm{~b}_{2} \\
\underline{k} & \mathrm{a}_{3} & \mathrm{~b}_{3}
\end{array}\right| \text { or }\left|\begin{array}{ccc}
\underline{i} & \underline{j} & \underline{k} \\
\mathrm{a}_{1} & \frac{\mathrm{a}_{2}}{} & \mathrm{a}_{3} \\
\mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3}
\end{array}\right|
\end{aligned}
$$

Note: The \underline{i} component $\left(\mathrm{a}_{2} \mathrm{~b}_{3}-\mathrm{a}_{3} \mathrm{~b}_{2}\right)$ involves only $2 \mathrm{~s} \& 3 \mathrm{~s}$; the 1 st term (23) is in the 'forwards' direction; the 2 nd (32) is in the 'backwards' direction.

Example

$$
\begin{aligned}
& (4 \underline{i}+3 \underline{j}+2 \underline{k}) \times(2 \underline{i}-\underline{j}+5 \underline{k}) \\
& =\left(\begin{array}{l}
4 \\
3 \\
2
\end{array}\right) \times\left(\begin{array}{c}
2 \\
-1 \\
5
\end{array}\right) \\
& =\left|\begin{array}{ccc}
\underline{i} & 4 & 2 \\
\underline{j} & 3 & -1 \\
\underline{k} & 2 & 5
\end{array}\right| \\
& =\left|\begin{array}{cc}
3 & -1 \\
2 & 5
\end{array}\right| \underline{i}-\left|\begin{array}{ll}
4 & 2 \\
2 & 5
\end{array} \underline{j}+\left|\begin{array}{cc}
4 & 2 \\
3 & -1
\end{array}\right| \underline{k}\right. \\
& =17 \underline{i}-16 \underline{j}-10 \underline{k}
\end{aligned}
$$

Check:

We expect $17 \underline{i}-16 \underline{j}-10 \underline{k}$ to be perpendicular to both of the original vectors.
$\left(\begin{array}{c}17 \\ -16 \\ -10\end{array}\right) \cdot\left(\begin{array}{l}4 \\ 3 \\ 2\end{array}\right)=68-48-20=0$
$\left(\begin{array}{c}17 \\ -16 \\ -10\end{array}\right) \cdot\left(\begin{array}{c}2 \\ -1 \\ 5\end{array}\right)=34+16-50=0$

Example: Find a unit vector perpendicular to the vectors $4 \underline{i}+3 \underline{j}+2 \underline{k}$ and $2 \underline{i}-\underline{j}+5 \underline{k}$

Solution

$$
|17 \underline{i}-16 \underline{j}-10 \underline{k}|=\sqrt{17^{2}+(-16)^{2}+(-10)^{2}}=\sqrt{645},
$$

so that the required unit vector is
$\frac{1}{\sqrt{645}}(17 \underline{i}-16 \underline{j}-10 \underline{k})$
(6) The vector product can't properly be used to find the angle between two vectors.

Example: Find the angle between $\underline{a}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ and $\underline{b}=\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right)$
Method A: scalar product
$\underline{a} \cdot \underline{b}=|\underline{a}||\underline{b}| \cos \theta$
Also, $\underline{a} \cdot \underline{b}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) \cdot\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right)=1+2+4=7$
So $\cos \theta=\frac{7}{\sqrt{3} \sqrt{21}}=\frac{\sqrt{7}}{3} \Rightarrow \theta=0.49088$ (5sf)
Method B: vector product
$|\underline{a} \times \underline{b}|=|\underline{a}||\underline{b}||\sin \theta|$
[To make any progress, we have to consider the magnitude of the vector product. But this leads to spurious solutions.]

Also, $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) \times\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right)=\left|\begin{array}{lll}\underline{i} & 1 & 1 \\ \bar{j} & 1 & 2 \\ \underline{k} & 1 & 4\end{array}\right|=\left(\begin{array}{c}2 \\ -3 \\ 1\end{array}\right)$
so that $|\underline{a} \times \underline{b}|=\sqrt{4+9+1}=\sqrt{14}$
and $|\sin \theta|=\frac{\sqrt{14}}{\sqrt{3} \sqrt{21}}=\frac{\sqrt{2}}{3}$
$\Rightarrow \sin \theta=\frac{\sqrt{2}}{3}$, so that $\theta=0.49088$ or $\pi-0.49088$
or $\sin \theta=-\frac{\sqrt{2}}{3}$, so that $\theta=-0.49088$ or $\pi-(-0.49088)$

We know, from using the scalar product, that $\theta=0.49088$ is the acute angle between \underline{a} and $\underline{b} . \theta=-0.49088$ arises because $|\underline{b} \times \underline{a}|=|\underline{a} \times \underline{b}|$. With $\underline{b} \times \underline{a}$ we are just measuring the angle in the opposite direction, so once again the required angle is 0.49088 .
$\theta=\pi-0.49088$ arises from $\underline{b} \times(-\underline{a})$, and so there is an ambiguity (from the information we have, $\pi-0.49088$ could be the required angle) - see the diagrams below, where $\alpha=0.49088$ $\theta=\pi-(-0.49088)=\pi+0.49088$ arises from $(-\underline{a}) \times \underline{b}$, and the required angle would be $2 \pi-(\pi+0.49088)=\pi-0.49088$ again.

α arises from $\underline{a} \times \underline{b}$
$\pi-\alpha$ arises from $\underline{b} \times(-\underline{a})$

$\pi+\alpha$ arises from $(-\underline{a}) \times \underline{b}$
[There are other possibilities; eg $(-\underline{a}) \times(-\underline{b})$ and $(-\underline{b}) \times \underline{a}$, but they produce the same angles.]

In conclusion, if the vector product reveals that $|\sin \theta|=k$, then the angle between the vectors could be either $\sin ^{-1} k$ or $\pi-\sin ^{-1} k$. If only the acute angle between the two vectors is required, then the answer is $\sin ^{-1} k$.
(7) Areas
(i) Triangle
$=\frac{1}{2}|\underline{a}||\underline{b}| \sin \theta$
$=\frac{1}{2}|\underline{a} \times \underline{b}|$

Example: Find the area of the triangle with corners A $(1,2,3)$, B $(4,5,6) \& C(9,8,7)$

Solution

$\overrightarrow{A B}=\left(\begin{array}{l}3 \\ 3 \\ 3\end{array}\right) \& \overrightarrow{A C}=\left(\begin{array}{l}8 \\ 6 \\ 4\end{array}\right)$
Area $=\frac{1}{2}|\overrightarrow{A B} \times \overrightarrow{A C}|=\frac{1}{2}| | \begin{array}{lll}\underline{i} & 3 & 8 \\ \underline{j} & 3 & 6 \\ \underline{k} & 3 & 4\end{array}| |$
$=\frac{1}{2}|-6 \underline{i}+12 \underline{j}-6 \underline{k}|$
$=\frac{1}{2} \times 6 \times|\underline{i}-2 \underline{j}+\underline{k}|=3 \times \sqrt{1+4+1}=3 \sqrt{6}$
(ii) Parallelogram
$=|(\underline{b}-\underline{a}) \times(\underline{d}-\underline{a})|$

[Area is twice that of the triangle ABD]

$$
\begin{aligned}
& =|\underline{b} \times \underline{d}-\underline{b} \times \underline{a}-\underline{a} \times \underline{d}+\underline{a} \times \underline{a}| \\
& =|\underline{a} \times \underline{b}+\underline{b} \times \underline{d}+\underline{d} \times \underline{a}|
\end{aligned}
$$

[Note that ABD is anti-clockwise.]
(8) Proof that the vector product is distributive over vector addition
ie that $\underline{a} \times(\underline{b}+\underline{c})=(\underline{a} \times \underline{b})+(\underline{a} \times \underline{c})$
or that $\underline{a} \times(\underline{b}+\underline{c})-(\underline{a} \times \underline{b})-(\underline{a} \times \underline{c})=0$
We will show that $\underline{\mathrm{r}} \cdot[\underline{a} \times(\underline{b}+\underline{c})-(\underline{a} \times \underline{b})-(\underline{a} \times \underline{c})]=0$ for any \underline{r} (which implies the required result)

LHS $=\underline{r} \cdot[\underline{a} \times(\underline{b}+\underline{c})]-\underline{r} \cdot(\underline{a} \times \underline{b})-\underline{r} \cdot(\underline{a} \times \underline{c})$
by distributivity of the scalar product over vector addition
$=(\underline{b}+\underline{c}) .(\underline{r} \times \underline{a})-\underline{b} \cdot(\underline{\mathrm{r}} \times \underline{a})-\underline{c} .(\underline{\mathrm{r}} \times \underline{a})$, by cyclic interchange
$=\underline{b} \cdot(\underline{r} \times \underline{a})+\underline{c} .(\underline{r} \times \underline{a})-\underline{b} .(\underline{\mathrm{r}} \times \underline{a})-\underline{c} .(\underline{\mathrm{r}} \times \underline{a})$
by distributivity of scalar product
$=0$
(9) To find a vector perpendicular to a given 3D vector $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$: just take the vector product with eg $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$, to give $\left(\begin{array}{c}0 \\ c \\ -b\end{array}\right)$ [as $\underline{a} \times \underline{b}$ will be perpendicular to $\underline{a}]$
[As can be seen, $\left(\begin{array}{l}a \\ b \\ c\end{array}\right) \cdot\left(\begin{array}{c}0 \\ c \\ -b\end{array}\right)=0$]

