Trigonometry - t formulae (4 pages; 24/3/20)
[See also "Integration Methods" \& "Trig. Exercises - Part 2".]
(1) The $t=\tan \left(\frac{x}{2}\right)$ substitution can be useful (albeit mainly as a method of last resort) for awkward integrals - enabling a complicated combination of trig. ratios to be converted to a combination of powers of t. Equations can also sometimes be solved by this method.
(2) $t=\tan \left(\frac{x}{2}\right) \Rightarrow \tan x=\frac{2 t}{1-t^{2}}$ (by the double angle formula)

Other trig. ratios can be read off the right-angled triangle in the diagram:

(Note that $(2 t)^{2}+\left(1-t^{2}\right)^{2}=4 t^{2}+1-2 t^{2}+t^{4}$
$\left.=1+2 t^{2}+t^{4}=\left(1+t^{2}\right)^{2}\right)$
Thus, $\sin x=\frac{2 t}{1+t^{2}}$ and $\cos x=\frac{1-t^{2}}{1+t^{2}}$
(3) The above derivation (using Pythagoras) is only valid for $x<\frac{\pi}{2}$. For larger angles, the same formulae hold, but an algebraic approach is necessary:
$\sin x=2 \sin \left(\frac{x}{2}\right) \cos \left(\frac{x}{2}\right)=\frac{2 \tan \left(\frac{x}{2}\right)}{\sec ^{2}\left(\frac{x}{2}\right)}=\frac{2 t}{1+t^{2}}$
and $\cos x=\cos ^{2}\left(\frac{x}{2}\right)-\sin ^{2}\left(\frac{x}{2}\right)=\frac{1-\tan ^{2}\left(\frac{x}{2}\right)}{\sec ^{2}\left(\frac{x}{2}\right)}=\frac{1-t^{2}}{1+t^{2}}$
(4) Note that $t=\tan \left(\frac{x}{2}\right)$ isn't defined when x is an odd multiple of π. When the substitution is used to solve equations, these values of x will have to be considered separately.
(5) Be careful not to confuse the triangle in (1) with the following triangle, which can be used to find expressions in terms of t for $\sin \left(\frac{x}{2}\right)$ and $\cos \left(\frac{x}{2}\right)$

Thus, $\sin \left(\frac{x}{2}\right)=\frac{t}{\sqrt{1+t^{2}}}$ and $\cos \left(\frac{x}{2}\right)=\frac{1}{\sqrt{1+t^{2}}}$

Alternative derivation of $\sin \left(\frac{x}{2}\right)=\frac{t}{\sqrt{1+t^{2}}}$:
Let $\theta=\frac{x}{2}$, so that $\tan \theta=t$
Then $\sin \left(\frac{x}{2}\right)=\sin \theta=\frac{\tan \theta}{\sec \theta}=\frac{t}{\sqrt{1+\tan ^{2} \theta}}=\frac{t}{\sqrt{1+t^{2}}}$
(6) Exercise: Use the $t=\tan \left(\frac{x}{2}\right)$ substitution to find θ (in terms of $a, b \& c)$ when $a \cos \theta+b \sin \theta=c(0 \leq \theta<\pi)$ and $a^{2}+b^{2}=c^{2}$ $(a \neq 0)$
[Note: This eq'n is more easily solved by writing the LHS as $R \sin (\theta+\alpha)$.]

Solution

$a \cos \theta+b \sin \theta=c \Rightarrow a\left(\frac{1-t^{2}}{1+t^{2}}\right)+b\left(\frac{2 t}{1+t^{2}}\right)=c$
$\Rightarrow a\left(1-t^{2}\right)+2 b t=c\left(1+t^{2}\right)$
$\Rightarrow t^{2}(c+a)-2 b t+c-a=0$
$\Rightarrow t=\frac{2 b \pm \sqrt{4 b^{2}-4(c+a)(c-a)}}{2(c+a)}=\frac{b \pm \sqrt{b^{2}-\left(c^{2}-a^{2}\right)}}{c+a}=\frac{b}{a+c}$
Then $\tan \theta=\frac{2 t}{1-t^{2}}=\frac{\left(\frac{2 b}{a+c}\right)}{1-\left(\frac{b}{a+c}\right)^{2}}=\frac{2 b(a+c)}{(a+c)^{2}-b^{2}}$
$=\frac{2 b(a+c)}{2 a^{2}+2 a c}=\frac{b}{a}$
Thus, $\theta=\tan ^{-1}\left(\frac{b}{a}\right)$
(7) If $t=\tan \left(\frac{x}{2}\right)$ and $T=\tan \left(\frac{\frac{\pi}{2}-x}{2}\right)$, find t in terms of T, and T in terms of t.

Solution

$T=\tan \left(\frac{\frac{\pi}{2}-x}{2}\right)=\tan \left(\frac{\pi}{4}-\frac{x}{2}\right)=\frac{\tan \left(\frac{\pi}{4}\right)-\tan \left(\frac{x}{2}\right)}{1+\tan \left(\frac{\pi}{4}\right) \tan \left(\frac{x}{2}\right)}=\frac{1-t}{1+t}$
And hence $T(1+t)=1-t$, so that $t(T+1)=1-T$
and $t=\frac{1-T}{1+T}$ (or by symmetry, considering the right-angled triangle with other angles x and $\left.\frac{\pi}{2}-x\right)$.

