Trigonometry - Relations (3 pages; 15/4/21)

(1) Symmetry

(i) $\cos (-\theta)=\cos \theta \& \sin (-\theta)=-\sin \theta$ (from the graphs)
(ii) $\sin \left(180^{\circ}-\theta\right)=\sin \theta$ and $\cos \left(360^{\circ}-\theta\right)=\cos \theta$, by the symmetries of the sine and cosine graphs about $\theta=90^{\circ}$ and 180°, respectively.

(2) Complementary angles

$\sin \theta=\cos \phi=\cos \left(90^{\circ}-\theta\right)$ and $\cos \theta=\sin \phi=\sin \left(90^{\circ}-\theta\right)$
$\theta \& \phi$ are 'complementary' angles (ie they add up to 90°). This is the origin of the term 'cosine': $\cos \theta$ is the sine of the angle complementary to θ.

Similarly, $\cot \theta=\tan \phi$, and $\operatorname{cosec} \theta=\frac{1}{\sin \theta}=\frac{1}{\cos \phi}=\sec \phi$
(3) Translations

Graphs of $y=\sin x$ (black) \& $y=\cos x($ red $)$
[Note that replacing θ with $\theta+\alpha$ produces a translation of α to the left, and replacing θ with $\theta-\alpha$ produces a translation of α to the right. See "Transformations of Functions" for further details.]

As an alternative to using the compound angle formulae (see Part 2), the following examples can be tackled by considering the translation and/or reflection involved; or often just by examining the graph.

Examples

(i) $\sin \left(360^{\circ}-\theta\right)=\sin (-\theta)=-\sin \theta$ (or from the graph)
(ii) $\sin \left(\theta+180^{\circ}\right)=\sin \left(\theta-180^{\circ}\right)=-\sin \left(180^{\circ}-\theta\right)=-\sin \theta$
(or from the graph, or by noting that replacing θ in $\sin \theta$ by
$\theta+180^{\circ}$ produces a translation of 180° to the left, which gives the graph of $-\sin \theta$)
(iii) $\cos \left(180^{\circ}-\theta\right)=\cos \left(\theta-180^{\circ}\right)$, which is obtained from $\cos \theta$
by a translation of 180° to the right, which is seen to be $-\cos \theta$ (as can be verified from the compound angle formula).
(iv) $\sin \left(\theta+90^{\circ}\right)$ can be obtained from $\sin \theta$ by a translation of 90° to the left, which is seen to be $\cos \theta$

