(1) Solution of simple equations - for a range of angles

Example: To solve $\sin \left(2 \theta-\frac{\pi}{6}\right)=0.5$ for $0<\theta \leq 2 \pi$,
let $\phi=2 \theta-\frac{\pi}{6}$, so that $-\frac{\pi}{6}<\phi \leq 4 \pi-\frac{\pi}{6}$
Then $\phi=\frac{\pi}{6}, \pi-\frac{\pi}{6}$, and also $\frac{\pi}{6}+2 \pi \& \pi-\frac{\pi}{6}+2 \pi$
and values for θ are obtained from $\theta=\frac{1}{2}\left(\phi+\frac{\pi}{6}\right)$
[When $\cos \phi=0.5, \phi=\frac{\pi}{3}, 2 \pi-\frac{\pi}{3}$, and multiples of 2π can be added or subtracted.]
(2) General solution of simple equations

The approach above (for a limited range of θ) can be applied, to obtain two ('base') solutions in one cycle (except for $\sin \theta=$ 1 or -1). Then the general solutions can be derived as follows:
(i) For eg $\sin \theta=0.5$, the base solutions are $\theta=\frac{\pi}{6}, \pi-\frac{\pi}{6}$

A more concise alternative to $\frac{\pi}{6}+2 k \pi$ or $\frac{5 \pi}{6}+2 k \pi$ is to note that the solutions lie alternately $\frac{\pi}{6}$ ahead of and behind the multiples of π, so that we can write $\theta=n \pi+(-1)^{n}\left(\frac{\pi}{6}\right)$

So the general solution for $y=\sin x$ is $x=n \pi+(-1)^{n} \arcsin y$ (ii) For eg $\cos \theta=0.5$, the base solutions are $\theta=\frac{\pi}{3}, 2 \pi-\frac{\pi}{3}$, or alternatively $\theta=\frac{\pi}{3} \&-\frac{\pi}{3}$, from which we obtain the general solution of $\theta=2 k \pi \pm \frac{\pi}{3}$

So the general solution for $y=\cos x$ is $x=2 k \pi \pm \arccos y$
(iii) For eg $\tan \theta=1$, the general solution is just $\theta=\frac{\pi}{4}+k \pi$

So the general solution for $y=\tan x$ is $x=\arctan y+k \pi$

