Trigonometry – Small angle approximations

(2 pages; 15/4/21)

These can be derived for *sinx* & *cosx* from their Maclaurin expansions [See " Maclaurin Series"].

Thus $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots \Rightarrow sinx \approx x$ for small x,

&
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots \Rightarrow \cos x \approx 1 - \frac{x^2}{2}$$
 for small x

Alternative derivation

For $sinx \approx x$:

 $\triangle OAB < sectorOAB < \triangle OAC$,

so that $\frac{1}{2}r^2sinx < \frac{1}{2}r^2x < \frac{1}{2}r(rtanx)$

and hence $1 < \frac{x}{sinx} < \frac{1}{cosx}$

As $x \to 0$, $\frac{1}{\cos x} \to 1$ (from above);

ie we can make $\frac{1}{\cos x}$ as close to 1 as we please,

and then $\frac{x}{sinx} \approx 1$; ie $sinx \approx x$ for small x

For $\cos x \approx 1 - \frac{x^2}{2}$:

Starting with $cos(2\theta) = cos^2\theta - sin^2\theta = 1 - 2sin^2\theta$,

and writing $x = 2\theta$, we have $cosx = 1 - 2sin^2\left(\frac{x}{2}\right)$

Then, for small x, $cosx \approx 1 - 2\left(\frac{x}{2}\right)^2 = 1 - \frac{x^2}{2}$