Trigonometry - Radians (4 pages; 15/4/21)
(1) Definition

Fig. 1
In Fig. 1, the arc length AC equals the radius of the circle, and the angle ABC is defined to be 1 radian.

The chord $A C$ is just smaller than r. Hence the triangle $A B C$ is a slightly squashed equilateral triangle, and so 1 rad is just less than 60°.

The exact size can be determined by proportional reasoning, using the table below; together with other useful facts.

	angle (deg)	angle (rad)	arc length	area of sector
1	a	1	r	
2	360	b	$2 \pi r$	πr^{2}
3	c	θ	d	e
4	ϕ	f		

Line 1 is based on the definition of the radian.
Line 2 is based on what we know about the circumference and area of a circle.

From the arc length column, we see that line 2 is 2π times line 1 .
Thus $a=\frac{360}{2 \pi}=\frac{180}{\pi}=57.3^{\circ}(3 s f)$; ie 1 radian is approx. 57.3°
And $b=2 \pi(1)=2 \pi$; ie there are 2π radians in a circle.
Then, as line 3 is θ times line $1, c=\theta a=\theta\left(\frac{360}{2 \pi}\right)$ or $\theta\left(\frac{180}{\pi}\right)$; ie we can convert from radians to degrees by multiplying by $\frac{360}{2 \pi}$ (or $\left.\frac{180}{\pi}\right)$.

Also, $d=\theta r$.
Then noting, from the arc length column, that line 3 is $\frac{\theta r}{2 \pi r}$ times line 2 ,
$e=\left(\frac{\theta r}{2 \pi r}\right)\left(\pi r^{2}\right)=\frac{1}{2} \theta r^{2}$, which is the area of a sector with an angle of θ rad.
[As an aid to memory, the triangle ABC in Fig. 1 has area $\frac{1}{2} r^{2} \sin \theta$, and as $\sin \theta \rightarrow \theta$ as $\theta \rightarrow 0$ [see "Small Angle Approximations" in Part 2], this area tends to $\frac{1}{2} r^{2} \theta$]

Finally, $f=(1)\left(\frac{\phi}{a}\right)=\left(\frac{2 \pi}{360}\right) \phi$, to give the radian equivalent of an angle in degrees.
[As the angle in degrees is much larger than the corresponding angle in radians, there should never be any doubt whether to multiply or divide by $\frac{360}{2 \pi}$ when switching between degrees and radians.]
(2) Why are radians preferred to degrees?
(i) The key point is that $\sin \theta \approx \theta$ for small θ measured in radians, but, if ϕ is measured in degrees, then
$\sin \phi=\sin \theta \approx \theta=\left(\frac{\pi}{180}\right) \phi$
So $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$ when θ is measured in radians
and $\lim _{\phi \rightarrow 0} \frac{\sin \phi}{\phi}=\frac{\pi}{180}$ when ϕ is measured in degrees
(ii) Consider the graph of $\sin \phi$, where ϕ is measured in degrees, and compare it with the graph of $\sin \theta$, where θ is measured in radians. $\sin \phi$ increases from 0 to 1 as ϕ increases from 0° to 90°, whereas $\sin \theta$ increases from 0 to 1 as θ increases from 0 to $\frac{\pi}{2}$.

Thus the graph of $\sin \phi$ is more stretched out than that of $\sin \theta$, with a much smaller gradient (except when $\cos \theta=\cos \phi=0$).

In particular, at the Origin, $y=\sin \theta$ tends to $y=\theta$ only when θ is measured in radians.
(iii) When measuring angles in radians,

$$
\frac{d}{d \theta} \sin \theta=\lim _{h \rightarrow 0} \frac{\sin (\theta+h)-\sin \theta}{h}=\lim _{h \rightarrow 0} \frac{\sin \theta \cos (h)+\cos \theta \sin (h)-\sin \theta}{h}
$$

As $\cos (h) \rightarrow 1$ as $h \rightarrow 0$, and $\frac{\sin (h)}{h} \rightarrow 1$, as we are measuring our angles in radians, $\frac{d}{d \theta} \sin \theta=\cos \theta$

But when measuring angles in degrees,
$\frac{d}{d \phi} \sin \phi=\lim _{h \rightarrow 0} \frac{\sin \phi \cos (h)+\cos \phi \sin (h)-\sin \phi}{h}$ again,
and it is still true that $\cos (h) \rightarrow 1$ as $h \rightarrow 0$, but now $\frac{\sin (h)}{h} \rightarrow \frac{\pi}{180}$ so that $\frac{d}{d \phi} \sin \phi=\frac{\pi}{180} \cos \phi$ (where ϕ is measured in degrees)

Note that, strictly speaking, it is not enough for ϕ to have a value which happens to be the number of degrees: the cosine (or sine) function itself is different, depending on whether the angle is measured in degrees or radians. To be clear, we could use the notation $\sin _{d e g} \phi$ and $\sin _{r a d} \theta$ (as in the next part).
(iv) Alternative derivation:

If ϕ is the angle in degrees, and θ is the angle in radians, so that $\phi=\left(\frac{180}{\pi}\right) \theta$, then
$\frac{d}{d \phi} \sin _{d e g} \phi=\frac{d}{d \phi} \sin _{r a d} \theta=\left[\frac{d}{d \theta} \sin _{r a d} \theta\right] \frac{d \theta}{d \phi}=\left(\cos _{r a d} \theta\right)\left(\frac{\pi}{180}\right)$
$=\left(\cos _{d e g} \phi\right)\left(\frac{\pi}{180}\right)$

Or: $\frac{d}{d \phi} \sin _{d e g} \phi=\frac{d}{d \phi} \sin _{r a d} \theta=\frac{d}{d \phi} \sin _{r a d}\left[\phi\left(\frac{\pi}{180}\right)\right]$
$=\left(\frac{\pi}{180}\right) \cos _{r a d}\left[\phi\left(\frac{\pi}{180}\right)\right]=\left(\frac{\pi}{180}\right) \cos _{r a d} \theta=\left(\frac{\pi}{180}\right) \cos _{d e g} \phi$

