Trigonometry – Inverse Functions (5 pages; 15/4/21)

(1) $y = tan^{-1}x$ (or arctanx)

(i) The scales have to be in radians in order for these graphs to be reflections of each other in y = x.

(ii) In order to establish the gradient of y = tanx at the Origin:

$$\frac{d}{dx}(\tan x) = \sec^2 x = 1 \text{ when } x = 0$$

(this assumes that the angle is in radians)

[The above graph hasn't been drawn that well: the gradients of both y = tanx and $y = tan^{-1}x$ are intended to be 1 at the Origin.]

(iii) In order for $y = tan^{-1}x$ to be a 1-1 mapping (and therefore a function), the domain of y = tanx has to be limited to $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

(iv)
$$\frac{d}{dx} \tan^{-1} x$$

Let $y = tan^{-1}x$

Then tany = x and $sec^2 y \frac{dy}{dx} = 1$ (differentiating implicitly wrt x) [alternatively, differentiate wrt y, to give $sec^2 y = \frac{dx}{dy}$ and take the reciprocal]

And as
$$sec^2y = tan^2y + 1 = x^2 + 1$$
, $\frac{dy}{dx} = \frac{1}{1+x^2}$

Also $\int \frac{1}{1+x^2} dx = tan^{-1}x + c$

[See also "Integration methods".]

(v) Features of $\frac{dy}{dx}$ (in agreement with graph): (a) $\frac{dy}{dx} \to 0$ as $x \to \pm \infty$ (b) $\frac{dy}{dx}$ is always positive (c) $\frac{dy}{dx} = 1$ when x = 0

(vi) $tanx = y \rightarrow x = arctany + n\pi$

(2) $y = sin^{-1}x$ (or arcsinx)

(i) In order for $y = sin^{-1}x$ to be a 1-1 mapping (and therefore a function), the domain of y = sinx has to be limited to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

(ii)
$$\frac{d}{dx}(\sin x) = 1$$
 when $x = 0$

(iii)
$$sinx = y \rightarrow x = (arcsiny \text{ or } \pi - arcsiny) + 2n\pi$$

or $x = n\pi + (-1)^n arcsiny$

(iv)
$$\frac{d}{dx} \sin^{-1}x$$

Let $y = \sin^{-1}x$, so that $\sin y = x$ and $\cos y \frac{dy}{dx} = 1$
Hence $\frac{dy}{dx} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - \sin^2 y}} = \frac{1}{\sqrt{1 - x^2}}$,

taking the positive root, as *y* is restricted to the range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, where cosy > 0 (assuming that $\frac{dy}{dx}$ is defined, so that $cosy \neq 0$)

(also $\frac{dy}{dx} > 0$ from the graph). Also $\int \frac{1}{\sqrt{1-x^2}} dx = sin^{-1}x$ (see "Integration Methods").

(v) Features of $\frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}}$ (a) $\frac{dy}{dx} \to \infty$ as $x \to \pm 1$ (b) $\frac{dy}{dx}$ is always positive (c) $\frac{dy}{dx}$ is undefined when $x \le -1$ or $x \ge 1$

(3)
$$y = cos^{-1}x$$
 (or $arccosx$)

(i) In order for $y = cos^{-1}x$ to be a 1-1 mapping (and therefore a function), the domain of y = cosx has to be limited to $[0, \pi]$.

fmng.uk

(ii)
$$cosx = y \rightarrow x = (arccosy \ or \ 2\pi - arccosy) + 2n\pi$$

or $\pm arccosy + 2n\pi$

(iii)
$$\frac{d}{dx} \cos^{-1}x$$

Let $y = \cos^{-1}x$, so that $\cos y = x$ and $-\sin y \frac{dy}{dx} = 1$
Hence $\frac{dy}{dx} = \frac{-1}{\sin y} = \frac{-1}{\sqrt{1-\cos^2 y}} = \frac{-1}{\sqrt{1-x^2}}$
taking the positive root, as y is restricted to the range $[0, \pi]$,
when $\sin y > 0$ (assuming that $\frac{dy}{dx}$ is defined, so that $\sin y \neq 0$)
(also $\frac{dy}{dx} < 0$ from the graph)
Also $\int \frac{1}{\sqrt{1-x^2}} dx = -\cos^{-1}x$ (see "Integration Methods").
Note: $\cos^{-1}x + \sin^{-1}x = \frac{\pi}{2}$ (see diagram),
so that $-\cos^{-1}x + c = \sin^{-1}x - \frac{\pi}{2} + c$
Thus the two alternative expressions for $\int \frac{1}{\sqrt{1-x^2}} dx$
 $(\sin^{-1}x \& -\cos^{-1}x)$ differ by a constant.

90-9 = sin"'x

(iv) $y = cos^{-1}x$ is the reflection of $y = sin^{-1}x$ in $y = \frac{\pi}{4}$, since $cos^{-1}x + sin^{-1}x = \frac{\pi}{2}$