(1) $y=\tan ^{-1} x($ or $\arctan x)$

(i) The scales have to be in radians in order for these graphs to be reflections of each other in $y=x$.
(ii) In order to establish the gradient of $y=\tan x$ at the Origin:
$\frac{d}{d x}(\tan x)=\sec ^{2} x=1$ when $x=0$
(this assumes that the angle is in radians)
[The above graph hasn't been drawn that well: the gradients of both $y=\tan x$ and $y=\tan ^{-1} x$ are intended to be 1 at the Origin.]
(iii) In order for $y=\tan ^{-1} x$ to be a 1-1 mapping (and therefore a function), the domain of $y=\tan x$ has to be limited to $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
(iv) $\frac{d}{d x} \tan ^{-1} x$

Let $y=\tan ^{-1} x$
Then tany $=x$ and $\sec ^{2} y \frac{d y}{d x}=1$ (differentiating implicitly wrt x) [alternatively, differentiate wrt y, to give $\sec ^{2} y=\frac{d x}{d y}$ and take the reciprocal]

And as $\sec ^{2} y=\tan ^{2} y+1=x^{2}+1, \frac{d y}{d x}=\frac{1}{1+x^{2}}$
Also $\int \frac{1}{1+x^{2}} d x=\tan ^{-1} x+c$
[See also "Integration methods".]
(v) Features of $\frac{d y}{d x}$ (in agreement with graph):
(a) $\frac{d y}{d x} \rightarrow 0$ as $x \rightarrow \pm \infty$
(b) $\frac{d y}{d x}$ is always positive
(c) $\frac{d y}{d x}=1$ when $x=0$
(vi) $\tan x=y \rightarrow x=\arctan y+n \pi$
(2) $y=\sin ^{-1} x($ or $\arcsin x)$

(i) In order for $y=\sin ^{-1} x$ to be 1-1 mapping (and therefore a function), the domain of $y=\sin x$ has to be limited to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
(ii) $\frac{d}{d x}(\sin x)=1$ when $x=0$
(iii) $\sin x=y \rightarrow x=(\arcsin y$ or $\pi-\arcsin y)+2 n \pi$ or $x=n \pi+(-1)^{n} \arcsin y$
(iv) $\frac{d}{d x} \sin ^{-1} x$

Let $y=\sin ^{-1} x$, so that $\sin y=x$ and $\cos y \frac{d y}{d x}=1$
Hence $\frac{d y}{d x}=\frac{1}{\cos y}=\frac{1}{\sqrt{1-\sin ^{2} y}}=\frac{1}{\sqrt{1-x^{2}}}$,
fmng.uk
taking the positive root, as y is restricted to the range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, where $\cos y>0$ (assuming that $\frac{d y}{d x}$ is defined, so that $\cos y \neq 0$) (also $\frac{d y}{d x}>0$ from the graph).

Also $\int \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1} x$ (see "Integration Methods").
(v) Features of $\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}$
(a) $\frac{d y}{d x} \rightarrow \infty$ as $x \rightarrow \pm 1$
(b) $\frac{d y}{d x}$ is always positive
(c) $\frac{d y}{d x}$ is undefined when $x \leq-1$ or $x \geq 1$
(3) $y=\cos ^{-1} x($ or $\arccos x)$

(i) In order for $y=\cos ^{-1} x$ to be a 1-1 mapping (and therefore a function), the domain of $y=\cos x$ has to be limited to $[0, \pi]$.
(ii) $\cos x=y \rightarrow x=(\arccos y$ or $2 \pi-\arccos y)+2 n \pi$ or $\pm \arccos y+2 n \pi$
(iii) $\frac{d}{d x} \cos ^{-1} x$

Let $y=\cos ^{-1} x$, so that $\cos y=x$ and $-\sin y \frac{d y}{d x}=1$
Hence $\frac{d y}{d x}=\frac{-1}{\sin y}=\frac{-1}{\sqrt{1-\cos ^{2} y}}=\frac{-1}{\sqrt{1-x^{2}}}$
taking the positive root, as y is restricted to the range $[0, \pi]$, when $\sin y>0$ (assuming that $\frac{d y}{d x}$ is defined, so that $\sin y \neq 0$) (also $\frac{d y}{d x}<0$ from the graph)

Also $\int \frac{1}{\sqrt{1-x^{2}}} d x=-\cos ^{-1} x$ (see "Integration Methods").
Note: $\cos ^{-1} x+\sin ^{-1} x=\frac{\pi}{2}$ (see diagram),
so that $-\cos ^{-1} x+c=\sin ^{-1} x-\frac{\pi}{2}+c$
Thus the two alternative expressions for $\int \frac{1}{\sqrt{1-x^{2}}} d x$ $\left(\sin ^{-1} x \&-\cos ^{-1} x\right)$ differ by a constant.
(iv) $y=\cos ^{-1} x$ is the reflection of $y=\sin ^{-1} x$ in $y=\frac{\pi}{4}$, since $\cos ^{-1} x+\sin ^{-1} x=\frac{\pi}{2}$

