Trigonometry - Basics (2 pages; 15/4/21)
(1) Sin, $\cos \& \tan$ of $30^{\circ}, 60^{\circ} \& 45^{\circ}$

$\sin 30^{\circ}=\frac{1}{2} ; \sin 60^{\circ}=\frac{\sqrt{3}}{2}$
$\cos 30^{\circ}=\frac{\sqrt{3}}{2} ; \cos 60^{\circ}=\frac{1}{2}$
$\tan 30^{\circ}=\frac{1}{\sqrt{3}} ; \tan 60^{\circ}=\sqrt{3}$

$\cos 45^{\circ}=\sin 45^{\circ}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$
$\tan 45^{\circ}=1$

Graphs of $y=\sin x($ black $) \& y=\cos x($ red $)$

Graph of $y=\tan x$

As $\frac{\sqrt{3}}{2}$ is larger than $\frac{1}{2}$, the shape of the sine curve makes it clear that $\sin 30^{\circ}=\frac{1}{2}$ and $\sin 60^{\circ}=\frac{\sqrt{3}}{2}$, rather than the other way round; and similarly for the cosine curve.

Also note that, since $\tan 45^{\circ}=1$ and the tangent function is increasing, we would expect $\tan 30^{\circ}$ to be less than 1 and $\tan 60^{\circ}$ to be greater than 1 (so that there should be no confusion as to which is $\frac{1}{\sqrt{3}}$ and which is $\sqrt{3}$).
$\sin , \cos \& \tan$ of multiples of $30^{\circ}, 45^{\circ} \& 60^{\circ}$ can be found by referring to the graph.

