Taylor Series (5 pages; 23/7/21)
(1) Maclaurin series are a special case of Taylor series, of which there are two versions.

The following is intended as a simple way of finding the first couple of terms of the Taylor series, in each case. The remaining terms then follow, once the pattern has been established.

Centred on $\boldsymbol{x}=\boldsymbol{a}($ version 1$)$

For x close to a, $f^{\prime}(a) \approx \frac{f(x)-f(a)}{x-a}$,
leading to $f(x)=f(a)+(x-a) f^{\prime}(a)+\frac{(x-a)^{2} f^{\prime \prime}(a)}{2!}+\cdots$

Centred on $x=a($ version 2)

For x close to a, $f^{\prime}(a) \approx \frac{f(a+x)-f(a)}{x}$
leading to $f(x+a)=f(a)+x f^{\prime}(a)+\frac{x^{2} f^{\prime \prime}(a)}{2!}+\cdots$

Centred on $\boldsymbol{x}=\mathbf{0}$ (Maclaurin expansion)

For x close to $0, f^{\prime}(0) \approx \frac{f(x)-f(0)}{x}$
leading to $f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2} f^{\prime \prime}(0)}{2!}+\cdots$
(This is also obtained by putting $a=0$ in versions 1 or 2 .)
(2) More formal derivation of the Taylor series expansion:

Suppose that $g(x)=g(0)+g^{\prime}(0) x+g^{\prime \prime}(0) \frac{x^{2}}{2!}+\cdots$
Define $f(x+a)=g(x)$
$[\operatorname{eg} g(x)=\ln (1+x)=f(x+1)$, where $a=1]$
Then $g^{\prime}(x)=\frac{d}{d x} f(x+a)=\frac{d}{d(x+a)} f(x+a) \cdot \frac{d}{d x}(x+a)$
$=f^{\prime}(x+a)$
[Note that $f^{\prime}(x+a)$ means the derivative wrt $x+a$; not wrt x]
Also $g^{\prime \prime}(x)=\frac{d}{d x} g^{\prime}(x)=\frac{d}{d x} f^{\prime}(x+a)$
$=\frac{d}{d(x+a)} f^{\prime}(x+a) \cdot \frac{d}{d x}(x+a)=f^{\prime \prime}(x+a)$, and so on.

Thus, from (A),
$f(x+a)=f(0+a)+f^{\prime}(0+a) x+f^{\prime \prime}(0+a) \frac{x^{2}}{2!}+\cdots$
$=f(a)+f^{\prime}(a) x+f^{\prime \prime}(a) \frac{x^{2}}{2!}+\cdots$
(version 2 of the Taylor Series above)

Also, if we write $X=x+a$, this becomes
$f(X)=f(a)+f^{\prime}(a)(X-a)+f^{\prime \prime}(a) \frac{(X-a)^{2}}{2!}+\cdots$
(version 1 of the Taylor Series above)
(3) To establish the Taylor series for $f(x)=\ln x$ about $x=1$:

Version 1:
$f(x)=f(1)+f^{\prime}(1)(x-1)+\frac{f^{\prime \prime}(1)(x-1)^{2}}{2!}+\cdots$
$f(1)=0$
$f^{\prime}(x)=\frac{1}{x} ; f^{\prime}(1)=1$
$f^{\prime \prime}(x)=-\frac{1}{x^{2}} ; f^{\prime \prime}(1)=-1$
$f^{\prime \prime \prime}(x)=\frac{2}{x^{3}} ; f^{\prime \prime}(1)=2$
Thus $\ln x=0+(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\cdots$
[Note: This can also be obtained from the Maclaurin series, by writing $\ln x=\ln (1+[x-1])]$

Version 2: $\ln (x+1)=0+x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots$
[In order to create a Taylor series for $f(x)$ about $x=a$, we have to make one of two compromises: either express $f(x)$ in terms of powers of $x-a$, or obtain a series for $f(x+a)$.]
(4) To establish the Taylor series for $f(x)=\frac{1}{x}$ about $x=1$:
$f^{\prime}(x)=-\frac{1}{x^{2}} ; f^{\prime \prime}(x)=\frac{2}{x^{3}} ; f^{\prime \prime \prime}(x)=-\frac{3!}{x^{4}}$
Version 1:
$f(x)=f(1)+f^{\prime}(1)(x-1)+\frac{f^{\prime \prime}(1)(x-1)^{2}}{2!}+\frac{f^{\prime \prime \prime}(1)(x-1)^{3}}{3!}+\cdots$
ie $\frac{1}{x}=1-(x-1)+(x-1)^{2}-(x-1)^{3}+\cdots$
Version 2:
$\frac{1}{x+1}=1-x+x^{2}-x^{3}+\cdots$
(5) Taylor expansions of solutions to differential equations can be found as follows.

Example: $\frac{d y}{d x}+y-e^{x}=0$, where $y=2$ when $x=0$
$\frac{d y}{d x}=e^{x}-y$
$\left.\frac{d y}{d x} \right\rvert\,(x=0)=1-2=-1$
$\frac{d^{2} y}{d x^{2}}=e^{x}-\frac{d y}{d x}$
$\left.\frac{d^{2} y}{d x^{2}} \right\rvert\,(x=0)=1-(-1)=2$
$\frac{d^{3} y}{d x^{3}}=e^{x}-\frac{d^{2} y}{d x^{2}}$
$\left.\frac{d^{3} y}{d x^{3}} \right\rvert\,(x=0)=1-2=-1$
Then $y=y_{0}+\left(x-x_{0}\right) \frac{d y}{d x} \left\lvert\,(x=0)+\frac{\left.\frac{d^{2} y}{d x^{2}} \right\rvert\,(x=0)\left(x-x_{0}\right)^{2}}{2!}\right.$
$+\frac{\left.\frac{d^{3} y}{d x^{3}} \right\rvert\,(x=0)\left(x-x_{0}\right)^{3}}{3!}+\cdots$
$=2-x+x^{2}-\frac{x^{3}}{6}+\cdots$
[This can be extended to higher order equations, when $\left.\frac{d y}{d x} \right\rvert\,(x=0)$ etc are given.]

