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(A) Tests for divisibility 

(1) If the sum of the digits of a number is a multiple of 3, then the  

number itself is a multiple of 3; and similarly for 9. 

 

(2) 11 × 325847 = 3584317  

and  3 − 5 + 8 − 4 + 3 − 1 + 7 = 11 , which is a multiple of 11 

This is true in all cases: If 𝑎 − 𝑏 + 𝑐 − 𝑑 + ⋯ − 𝑧  is a multiple of 

11, then 𝑎𝑏𝑐𝑑 … 𝑧 is a multiple of 11. 

[and also for  𝑎 − 𝑏 + 𝑐 − 𝑑 + ⋯ + 𝑦] 

 

(B) Proof  

(1) As an alternative to proving that 𝐴 ⇒ 𝐵 and 𝐵 ⇒ 𝐴, it may be 

easier to prove that 𝐴 ⇒ 𝐵 and 𝐴′ ⇒ 𝐵′ (as 𝐴′ ⇒ 𝐵′ is equivalent 

to 𝐵 ⇒ 𝐴). 

 

(C) Series 

(1) ∑ 𝑟 =𝑛
𝑟=1 1 + 2 + 3 + ⋯ + 𝑛 =

1

2
 𝑛(𝑛 + 1) 

[Informal proof: The average size of the terms being added is  

1

2
(1 + 𝑛), and there are 𝑛 terms.] 

 

(D) Factorisations 

(1)(i)  𝑥2 − 𝑦2 = (𝑥 + 𝑦)(𝑥 − 𝑦) 

(ii) 𝑥3 − 𝑦3 = (𝑥 − 𝑦)(𝑥2 + 𝑥𝑦 + 𝑦2)  
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[Let 𝑓(𝑥) = 𝑥3 − 𝑦3. Then 𝑓(𝑦) = 0, and so 𝑥 − 𝑦 is a factor of 

𝑥3 − 𝑦3 , by the Factor Theorem.] 

𝑥3 + 𝑦3 = (𝑥 + 𝑦)(𝑥2 − 𝑥𝑦 + 𝑦2)  

(iii)  𝑥𝑛 − 𝑦𝑛 = (𝑥 − 𝑦)(𝑥𝑛−1 + 𝑥𝑛−2𝑦 + ⋯ + 𝑥𝑦𝑛−2 + 𝑦𝑛−1)  

or  (𝑥 + 𝑦)(𝑥𝑛−1 − 𝑥𝑛−2𝑦 + ⋯ + 𝑥𝑦𝑛−2 − 𝑦𝑛−1) , if 𝑛 is even 

𝑥𝑛 + 𝑦𝑛 = (𝑥 + 𝑦)(𝑥𝑛−1 − 𝑥𝑛−2𝑦 + ⋯ − 𝑥𝑦𝑛−2 + 𝑦𝑛−1) if 𝑛 is odd 

 

(2) Let 𝑓(𝑛) be the number of factors of 𝑛 (including 1). 

If 𝑛 = 𝑝𝑞, where 𝑝 & 𝑞 have no common factors (other than 1), 

then  𝑓(𝑛) = 𝑓(𝑝)𝑓(𝑞). 

[eg 100 = 22 × 52; factors are obtained from 
{1, 2, 4} with {1, 5, 25}, giving a total of 3 × 3 = 9 factors: 

1, 5, 25, 2, 10, 50, 4, 20, 100] 

 

(E) Integer solutions 

eg 𝑥𝑦 − 8𝑥 + 6𝑦 = 90  

can be rearranged to (𝑥 + 6)(𝑦 − 8) = 42  

 

(F) Trinomial expansions 

(i) (𝑎 + 𝑏 + 𝑐)2 = (𝑎2 + 𝑏2 + 𝑐2) + 2(𝑎𝑏 + 𝑎𝑐 + 𝑏𝑐) 

 

(ii) (𝑎 + 𝑏 + 𝑐)3 = (𝑎3 + 𝑏3 + 𝑐3)  

+3(𝑎2𝑏 + 𝑎2𝑐 + 𝑏2𝑎 + 𝑏2𝑐 + 𝑐2𝑎 + 𝑐2𝑏)  

+6𝑎𝑏𝑐  
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(G) Equating coefficients 

Example: To divide 𝑓(𝑥) = 𝑥3 + 𝑥2 − 11𝑥 + 10 by 𝑥 − 2  

First of all, 𝑓(2) = 8 + 4 − 22 + 10 = 0, so that there is no 

remainder. 

Then 𝑥3 + 𝑥2 − 11𝑥 + 10 = (𝑥 − 2)(𝑥2 + 𝑎𝑥 − 5)  

Equating coefficients of 𝑥2: 1 = 𝑎 − 2, so that 𝑎 = 3 

(Check: Equating coefficients of 𝑥: −11 = −5 − 2𝑎, so that  𝑎 = 3) 

This method is usually quicker than long division. 

 

(H) Inequalities (see Pure: "Inequalities" for further details) 

(1) Beware of multiplying inequalities by a quantity that is (or 

could be) negative (eg log(0.5)). 

 

(2) If 𝑎 and 𝑏 are ≥ 0, then 𝑎 > 𝑏 ⇔ 𝑎2 > 𝑏2 (as 𝑦 = 𝑥2 is an 

increasing function for 𝑥 ≥ 0). 

 

(3) If an expression can be arranged into the form (𝑎 − 𝑏)2, then 

this will be non-negative. 

 

(4) Methods for solving  
𝑥+1

𝑥−2
< 2𝑥    

Method 1: Multiply both sides by (𝑥 − 2)2 (as this is positive, 

assuming that 𝑥 ≠ 2). The resulting cubic will have a factor of 

𝑥 − 2.  Consider the regions of the graph. 

Method 2: Treat the cases 𝑥 − 2 < 0 and 𝑥 − 2 > 0 separately 
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Method 3: Rearrange as  
𝑥+1

𝑥−2
− 2𝑥   < 0, and write the LHS as a 

single fraction. Consider the critical points where either the 

numerator or the denominator is zero. 

Method 4: Sketch 𝑦 =
𝑥+1

𝑥−2
 and 𝑦 = 2𝑥, and consider the points of 

intersection. 

 

(I) Logarithms 

(1)  𝑙𝑜𝑔𝑎𝑏 = 𝑐 ⇔ 𝑎𝑐 = 𝑏 

 

(2) eg  3 + 2𝑙𝑜𝑔25 = 3𝑙𝑜𝑔22 + 𝑙𝑜𝑔2(52)   

= 𝑙𝑜𝑔2(23) + 𝑙𝑜𝑔2(52) = 𝑙𝑜𝑔2(8 × 25) = 𝑙𝑜𝑔2(200)  

 

(3) 𝑙𝑜𝑔𝑎𝑏 𝑙𝑜𝑔𝑏𝑐 = 𝑙𝑜𝑔𝑎𝑐   or  𝑙𝑜𝑔𝑏𝑐 =
𝑙𝑜𝑔𝑎𝑐

𝑙𝑜𝑔𝑎𝑏
 

Proof: Let 𝑏 = 𝑎𝑥  & 𝑐 = 𝑏𝑦 

Then 𝑐 = (𝑎𝑥)𝑦 = 𝑎𝑥𝑦 

and 𝑙𝑜𝑔𝑎𝑐 = 𝑥𝑦 = 𝑙𝑜𝑔𝑎𝑏 𝑙𝑜𝑔𝑏𝑐    

 

Special case: 𝑙𝑜𝑔𝑏𝑐 =
1

𝑙𝑜𝑔𝑐𝑏
 

 

(4) As 𝑙𝑜𝑔88 = 1  𝑎𝑛𝑑  𝑙𝑜𝑔864 = 2,  and as 𝑦 = 𝑙𝑜𝑔8𝑥 is a concave 

function (
𝑑𝑦

𝑑𝑥
 is decreasing; ie 

𝑑2𝑦

𝑑𝑥2 < 0), linear interpolation 

⇒ 𝑙𝑜𝑔8 [
1

2
(8 + 64)] >

1

2
(1 + 2)  
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ie 𝑙𝑜𝑔836 >
3

2
 

 

(5) To find an upper bound for  eg 𝑙𝑜𝑔23: 

Suppose that 𝑙𝑜𝑔23 <
𝑚

𝑛
 

Then 3 < 2(
𝑚

𝑛
)  and 3𝑛 < 2𝑚 

As 243 = 35 < 28 = 256, 𝑙𝑜𝑔23 <
8

5
 

[and 
8

5
 is a reasonably low upper bound, as 243 & 256 are 

reasonably close] 

 

(6) eg 𝑙𝑜𝑔212 = 𝑙𝑜𝑔2(3 × 4) = 𝑙𝑜𝑔23 + 𝑙𝑜𝑔24 <
8

5
+ 2 =

18

5
 , 

from (5) 

 

(7) eg 𝑙𝑜𝑔368 =
1

𝑙𝑜𝑔836
<

2

3
   , from (4) 

 

(8) Example: Show that  𝑙𝑜𝑔510 <
3

2
 

𝑙𝑜𝑔510 <
3

2
⇔ 10 < 5

(
3

2
)
 (as the log function is increasing)  

⇔ 102 < 53 ⇔ 100 < 125 

 

(J) Quadratics 

(1) Quadratic Functions 

Example: 𝑦 = 𝑥2 − 2𝑥 − 3 
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𝑥2 − 2𝑥 − 3 = (𝑥 + 1)(𝑥 − 3)  

Also  𝑥2 − 2𝑥 − 3 = (𝑥 − 1)2 − 4 

The minimum point of (1, −4) lies on the line of symmetry of the 

curve, which is equidistant from the two roots of 𝑥2 − 2𝑥 − 3 = 0: 

−1 & 3. 

Also, from the quadratic formula (which is itself derived by 

completing the square on 𝑎𝑥2 + 𝑏𝑥 + 𝑐): 

𝑥 =
2±√4+12

2
= 1 ± 2  

Thus the roots of  𝑥2 − 2𝑥 − 3 = 0 lie the same distance either 

side of the line of symmetry of the curve. 

 

(2) Factorisation of quadratics 

Example :  𝑓(𝑥) = 6𝑥2 + 𝑥 − 12 

We need to find  𝐴 and 𝐵  such that  𝐴 + 𝐵 = 1 (the coefficient of 

𝑥) and  𝐴𝐵 = −72 (the product of the coefficient of 𝑥2 and the 

constant term) 

𝐴 = 9 and 𝐵 = −8  satisfy this 

Then  𝑓(𝑥) = 6𝑥2 + 9𝑥 − 8𝑥 − 12 

= 3𝑥(2𝑥 + 3) − 4(2𝑥 + 3)  

= (3𝑥 − 4)(2𝑥 + 3)  

Alternatively,  𝑓(𝑥) = 6𝑥2 − 8𝑥 + 9𝑥 − 12 

= 2𝑥(3𝑥 − 4) + 3(3𝑥 − 4)  

= (2𝑥 + 3)(3𝑥 − 4)  
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(K) Polynomials 

(1) Integer roots 

Let 𝑓(𝑥) = 𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0 

where 𝑛 ≥ 2 and the 𝑎𝑖  are integers, with 𝑎0 ≠ 0. 

Then it can be shown that any rational root of the equation 

𝑓(𝑥) = 0 will be an integer.  

Proof 

Suppose that there is a rational root 
𝑝

𝑞
 , where 𝑝 & 𝑞 are integers 

with no common factor greater than 1 and 𝑞 > 0. 

Then  (
𝑝

𝑞
)

𝑛
+ 𝑎𝑛−1 (

𝑝

𝑞
)

𝑛−1
+ ⋯ + 𝑎2 (

𝑝

𝑞
)

2
+ 𝑎1 (

𝑝

𝑞
) + 𝑎0 = 0 

and, multiplying by 𝑞𝑛−1: 

𝑝𝑛

𝑞
+ 𝑎𝑛−1𝑝𝑛−1 + 𝑎𝑛−2𝑝𝑛−2𝑞 + ⋯ + 𝑎1𝑝𝑞𝑛−2 + 𝑎1𝑞𝑛−1 = 0  

Then, as all the terms from 𝑎𝑛−1𝑝𝑛−1 onwards are integers, it 

follows that 
𝑝𝑛

𝑞
 is also an integer, and hence 𝑞 = 1 (as 𝑝 & 𝑞 have  

no common factor greater than 1), and the root is an integer. 

 

(L) Turning Points 

(1) 
𝑑2𝑦

𝑑𝑥2 ≠ 0 is a sufficient (but not necessary) condition for a 

turning point (eg  
𝑑2𝑦

𝑑𝑥2 = 0 at 𝑥 = 0 for 𝑦 = 𝑥4) 

 

(2) A necessary and sufficient condition for a turning point is that 

the 1st non-zero derivative of the function should be of even 

order (and ≥ 2) (eg 𝑦 = 𝑥4, where 
𝑑𝑦

𝑑𝑥
=

𝑑2𝑦

𝑑𝑥2 =
𝑑3𝑦

𝑑𝑥3 = 0, but 
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𝑑4𝑦

𝑑𝑥4 ≠ 0) 

(3) To find the turning points of  𝑦 =
𝑥2−2𝑥+2

𝑥2−3𝑥−4
 , consider the 

quadratic  
𝑥2−2𝑥+2

𝑥2−3𝑥−4
= 𝑘 ,  with 𝑏2 − 4𝑎𝑐 = 0  (to give a quadratic in 

𝑘). 

 

(M) Greatest or least value of a function 

(1) Beware of establishing the greatest or least value of a function 

from stationary points: these only indicate local maxima and 

minima. 

Also, a greatest or least value may occur at a boundary of the 

domain. 

(2) Possibilities for demonstrating that 𝑓(𝑥) ≥ 0   

(i) 𝑓(𝑥) = [𝑔(𝑥)]2 + [ℎ(𝑥)]2  (for all 𝑥) 

(ii) For 𝑥 ≥ 𝑎: establish that 𝑓(𝑎) ≥ 0 and that 𝑓′(𝑥) ≥ 0  

for 𝑥 ≥ 𝑎. 

 

(N) Cubics 

(1) Cubics always have (exactly) one point of inflexion: 

𝑓′(𝑥) = 3𝑎𝑥2 + 2𝑏𝑥 + 𝑐   and  𝑓′′(𝑥) = 6𝑎𝑥 + 2𝑏  

So 𝑓′′(𝑥) = 0 ⇒ 𝑥 = −
𝑏

3𝑎
  

[For a general function, 𝑓′′(𝑥) = 0 is a necessary (but not 

sufficient) condition for a point of inflexion (which is a turning 

point of the gradient). However, for a cubic it is a sufficient 

condition as well.] 
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(2) There is rotational symmetry about the point of inflexion, and 

this implies that the point of inflexion is halfway between the 

turning points (if they exist). 

 

(3) The shape of a cubic will be determined by the number of 

stationary points (0, 1 or 2); 

Shape 1: 𝑦 = 𝑥3 + 𝑥 (0 stationary points): 
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Shape 2: 𝑦 = 𝑥3 (1 stationary point) 

 

 

 

 

 

 

 

 

 

 

Shape 3: 𝑦 = 𝑥3 − 𝑥 (2 stationary points): 
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(O) Transformations 

(1) Translation of (
𝑎
𝑏

) : 𝑦 = 𝑓(𝑥) → 𝑦 − 𝑏 = 𝑓(𝑥 − 𝑎) 

 

(2) Stretch of scale factor 𝑘 in the 𝑥 direction (eg if 𝑘 = 2, graph of 

 𝑦 = 𝑥2 is stretched outwards, so that the 𝑥-coordinates are 

doubled):  𝑦 = 𝑓(𝑥) → 𝑦 = 𝑓(
𝑥

𝑘
)  

Stretch of scale factor 𝑘  in the 𝑦 direction: 𝑦 = 𝑓(𝑥) →
𝑦

𝑘
= 𝑓(𝑥)  

 

(3) Note that, at each stage of a composite transformation, we 

must be replacing  𝑥 by either 𝑥 + 𝑎 (where 𝑎 can be negative) or 

𝑘𝑥 (and similarly for 𝑦). 

 

(4) Reflection in the line 𝑥 = 𝐿: 𝑦 = 𝑓(𝑥) → 𝑦 = 𝑓(2𝐿 − 𝑥) 

Reflection in the line 𝑦 = 𝐿: 𝑦 = 𝑓(𝑥) → 2𝐿 − 𝑦 = 𝑓(𝑥) 

Special cases:  

Reflection in the line 𝑥 = 0: 𝑓(𝑥) → 𝑓(−𝑥) 

Reflection in the line 𝑦 = 0: 𝑦 = 𝑓(𝑥) → −𝑦 = 𝑓(𝑥) 

 

(5) Example: To obtain 𝑦 = sin (2𝑥 + 60) from 𝑦 = 𝑠𝑖𝑛𝑥,  

either (a) stretch by scale factor 
1

2
 in the 𝑥 direction, to give 

𝑦 = sin(2𝑥), and then translate by (
−30

0
), to give 

𝑦 = sin(2[𝑥 + 30]) = sin (2𝑥 + 60)   
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or (b) translate by (
−60

0
), to give 𝑦 = sin(𝑥 + 60), and then 

stretch by scale factor 
1

2
 in the 𝑥 direction, to give 

𝑦 = sin(2𝑥 + 60)   [It is perhaps more awkward to produce a 

sketch by method (b).] 

[Note that, at each stage, we are either replacing 𝑥 by 𝑘𝑥, or by 

𝑥 ± 𝑎 ] 

 

(6) A rotation of 180° is equivalent to a reflection in the line 

𝑥 = 0, followed by a reflection in the line 𝑦 = 0, so that 𝑦 = 𝑓(𝑥) 

→ 𝑦 = −𝑓(−𝑥)  

 

(P) Trigonometry 

(1) Relation between 𝑠𝑖𝑛 and 𝑐𝑜𝑠   

 

Referring to the diagram,  

𝑠𝑖𝑛𝜃 =
𝑏

𝑐
= 𝑐𝑜𝑠𝜙 = 𝑐𝑜𝑠 (90° − 𝜃)  

and 𝑐𝑜𝑠𝜃 =
𝑎

𝑐
= 𝑠𝑖𝑛𝜙 = 𝑠𝑖𝑛(90° − 𝜃) 
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(The 'co' in cosine stands for 'complementary', because  𝜃 and 

90° − 𝜃 are described as complementary angles.) 

 

(2) Key Results  

(A) Compound Angle formulae 

𝑠𝑖𝑛(𝜃 + 𝜙) = 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 + 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙  

𝑐𝑜𝑠(𝜃 + 𝜙) = 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙 − 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙  

 

(B) 𝑠𝑖𝑛(𝜃 ± 360°) = 𝑠𝑖𝑛𝜃; 𝑐𝑜𝑠(𝜃 ± 360°) = 𝑐𝑜𝑠𝜃  

𝑐𝑜𝑠(−𝜃) = 𝑐𝑜𝑠𝜃 ;  𝑠𝑖𝑛(−𝜃) = −𝑠𝑖𝑛𝜃    

𝑠𝑖𝑛(180° − 𝜃) = 𝑠𝑖𝑛𝜃 ; 𝑐𝑜𝑠(180° − 𝜃) = −𝑐𝑜𝑠𝜃 

𝑠𝑖𝑛𝜃 = cos(90° − 𝜃) ; 𝑐𝑜𝑠𝜃 = 𝑠𝑖𝑛(90° − 𝜃) 

 

(C) Translations 

𝑠𝑖𝑛(𝜃 + 90°) is  𝑠𝑖𝑛𝜃 translated 90° to the left, which is 𝑐𝑜𝑠𝜃 

𝑠𝑖𝑛(𝜃 − 90°) is  𝑠𝑖𝑛𝜃 translated 90° to the right, which is −𝑐𝑜𝑠𝜃 

𝑐𝑜𝑠(𝜃 + 90°) is  𝑐𝑜𝑠𝜃 translated 90° to the left, which is −𝑠𝑖𝑛𝜃 

𝑐𝑜𝑠(𝜃 − 90°) is  𝑐𝑜𝑠𝜃 translated 90° to the right, which is 𝑠𝑖𝑛𝜃 

 

(3) To solve eg  sin(2𝑥 − 60°) = 0.5 ;   0 ≤ 𝑥 ≤ 360°: 

Let 𝑢 = 2𝑥 − 60°  and note that  −60° ≤ 𝑢 ≤ 660° 

Having found the solutions for 𝑢 (such that −60° ≤ 𝑢 ≤ 660°), the 

solutions for 𝑥 are obtained from 𝑥 =
1

2
(𝑢 + 60). 
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(4) Starting with  𝑐𝑜𝑠2𝜃 + 𝑠𝑖𝑛2𝜃 = 1 (A) and  

𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃 = 𝑐𝑜𝑠2𝜃 (B),  

1

2
[(𝐴) + (𝐵)] ⇒ 𝑐𝑜𝑠2𝜃 =

1

2
(1 + 𝑐𝑜𝑠2𝜃)  

and  
1

2
[(𝐴) − (𝐵)] ⇒ 𝑠𝑖𝑛2𝜃 =

1

2
(1 − 𝑐𝑜𝑠2𝜃)  

 

(Q) Symmetry  

(1) Symmetry about 𝑥 = 𝑎: 𝑓(𝑎 − 𝜆) = 𝑓(𝑎 + 𝜆)  for all 𝜆 

[Special case: symmetry about the 𝑦-axis: 𝑓(−𝑥) = 𝑓(𝑥)] 

Alternatively, 𝑓(2𝑎 − 𝑥) = 𝑓(𝑥)  for all 𝑥 [setting 𝑥 = 𝑎 + 𝜆] 

Example: sin(𝜋 − 𝜃) = 𝑠𝑖𝑛𝜃, and the sine curve has symmetry 

about 𝜃 =
𝜋

2
 

 

(2) If you are asked to sketch a curve defined for 𝑥 ∈ [𝑎, 𝑏], 

consider whether it might have symmetry about the mid-point 
𝑎+𝑏

2
 . 

 

(R) Counting 

(1) Selections 

(i) Ordered selections with repetition 

Number of ways of selecting 𝑟 items from 𝑛, if repetitions are 

allowed, and order is important  = 𝑛𝑟   
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(ii) Ordered selections without repetition  

Number of ways of selecting 𝑟 items from 𝑛, if repetitions are not 

allowed, and order is important 

= 𝑛(𝑛 − 1) … (𝑛 − [𝑟 − 1]) = 𝑛(𝑛 − 1) … (𝑛 − 𝑟 + 1)  

[Known as a Permutation] 

𝑃(𝑛, 𝑟) or 𝑃𝑟 
𝑛   =

𝑛!

(𝑛−𝑟)!
= 𝑛(𝑛 − 1) … (𝑛 − 𝑟 + 1) 

 

(iii) Unordered selections without repetition 

Number of ways of selecting 𝑟 items from 𝑛, if repetitions are not 

allowed, and order is not important 

[Known as a Combination.] 

𝐶(𝑛, 𝑟) or 𝐶𝑟 
𝑛  or (

𝑛
𝑟

) =
𝑛!

𝑟!(𝑛−𝑟)!
=

𝑛(𝑛−1)…(𝑛−𝑟+1)

𝑟!
 

[ 𝐶𝑟 
𝑛  can be obtained from 𝑃𝑟 

𝑛   =
𝑛!

(𝑛−𝑟)!
 by dividing by 𝑟! , to 

remove duplication (the 𝑃𝑟 
𝑛  ordered ways can be divided into 

groups of  𝑟!, containing the same items, but in a different order).] 

 

(iv) Unordered selections with repetition 

Number of ways of selecting 𝑟 items from 𝑛, if repetitions are 

allowed, and order is not important 

eg 𝐵𝐵𝐶𝐸 selected from 𝐴𝐵𝐶𝐷𝐸𝐹  (𝑟 = 4, 𝑛 = 6) 

write as |𝑋𝑋|𝑋||𝑋| 

(| indicates that we are moving on to the next letter, and XX 

indicates that we are selecting 2 items from the current letter: so 

|𝑋𝑋|𝑋||𝑋| means: move on to B (without selecting any As); then 
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select 2 Bs; then move on to the Cs; select 1 C; move on to D, and 

then on to E; select 1 E; then move on to F, but select no Fs) 

= Number of ways of choosing 𝑟 positions for the Xs, 

out of the  𝑛 − 1 |𝑠 and 𝑟  Xs (giving a total of  𝑛 − 1 + 𝑟) 

= (
𝑛 − 1 + 𝑟

𝑟
)  

 

 


