Topics by Exam Board specifications - Discrete (aka Decision) [Further Maths only]

(9 pages; 30/7/19)

OCR ('Discrete')

D: material common to AS and AL

D*: material for 2nd year of AL only

OCR (MEI)

Modelling with Algorithms [A] [can be taken at either AS or AL]

AQA ('Discrete')

D: material common to AS and AL

D*: material for 2nd year of AL only

EDX ('Decision')

D1: material common to AS and AL

D1*: material for 2nd year of AL only

D2: material common to AS and AL

D2*: material for 2nd year of AL only

	fmng reference (Y \Rightarrow note exists)	OCR	OCR (MEI)	AQA	Edx
Preliminaries					
Problem-		D			
solving					
terminology					
Sets		D			
Pigeonhole		D			
principle					
Permutations	Prob. & Stats	D			
&					
combinations					
Inclusion-		D			
exclusion					
principle					
Algorithms					
Terminology		D	А		D1
Practicalities		D			
Tracing through		D	А		D1
algorithm					
Order,		D, D*	А		
efficiency &					
complexity of					
an algorithm					
Heuristic			А		
algorithms					
Sorting					
algorithms					
Bubble Sort		D			D1
Shuttle Sort		D			
Quick Sort		D*	Α		D1
- counting			Α		
comparisons					

	fmng.uk				
(Bin-)packing	Y	D, D*	А		D1
algorithms					
- counting			А		
comparisons					
Allocation					D2
problems					
Introduction		D			
Cost matrix					D2
reduction					
Hungarian	Y				D2
algorithm					
- dummy					D2
location					
- incomplete					D2
data					
- maximum					D2
profit					
Formulation as					D2*
a LP problem					
Critical Path	Y				
analysis					
Construct	P1	D	А		D1
activity-on-arc					
networks					
Construct	P1			D	
activity-on-					
node networks					
Creation of the					D1
Precedence					
table from the					
network					
Perform	P1	D	А	D	D1
forward &					
backward					
passes					

			f	mng.uk	
Determine floats	P1	D,D*	А	D	D1
Use Cascade	P2	D*		D*	D1
(aka Gantt)				2	
chart					
Resource &			А	D*	
scheduling			••	2	
problems					
Lower bound	P2				D1
for number of					
workers					
needed					
Resource	P2			D*	D1*
Levelling					
Construct	P2			D*	D1*
Resource					
Histograms					
Construct	P2	D*			D1*
scheduling					
diagram					
Decision					D2*
Analysis					
Dynamic					D2*
Programming					
Bellman's					D2*
principle of					
optimality					
Stage & State					D2*
variables					Date
Use of					D2*
tabulation to					
solve max.,					
min., minimax,					
maximin					
problems					

				fmng.uk	
Dijkstra's	Y	D	A		D1
algorithm					
Floyd's	Y				D1*
algorithm					
Game Theory		D		D	D2
(zero sum)					
Converting to		D			
zero-sum form					
Reducing a		D		D	D2*
matrix using a					
dominance					
argument					
Identifying		D		D	D2
play-safe					
strategies and					
stable					
solutions					
Value of game				D	
Nash		D*			
equilibrium					
solution					
Determining		D		D	D2*
optimal mixed					
strategy					
Reformulating		D*		D*	D2*
as LP problem					
Graphs &					
Networks					
Terminology	Y	D	A	D	
Complete		D	A	D	D1
graphs					
Bipartite	Max. matching algorithm	D,D*	A	D	
graphs					

			f	mng.uk	
Eulerian		D		D	D1
graphs					
Hamiltonian		D*		D	D1*
graphs					
Isomorphism		D		D*	D1
Adjacency		D		D	
matrix					
(graphs)					
Weighted		D			D1
matrix					
(networks)					
Complement of				D	
graph					
Planar Graphs		D		D	D1
Euler's		D*		D	
formula					
Subgraph		D*		D	
Subdivision		D*		D	
contraction		D*			
thickness		D*			
Kuratowski's		D*		D*	
thm					
Planarity					D1
algorithm					
Linear	Y				
Programming					
Formulate		D*	А	D	D1
constrained					
optimisation					
problems (in					
standard					
form)					
Reformulating			A		
non-standard					
forms (if					
variables can					

			f	mng.uk	
be negative or					
objective					
function is to					
be minimised)					
Formulate	Y		А		
network					
problems as					
LP: shortest					
path, critical					
path, network					
flows,					
matching,					
allocation,					
transportation					
Graphical		D	А	D	D1
solution					
Integer		D	А		D1
solution					
Branch &		D*			
Bound method					
3D LP			А		
Reduction of			А		
3D LP to 2D					
Simplex	Y	D*	А	D*	D1*
method					
Formulate LP		D*	А	D*	D1*
problem in					
augmented (or					
'slack') form					
Minimisation	P2			D*	D1*
Interpretation		D*	А	D*	
2 Stage	P2		А		D1*
Simplex					
Big M method	P2				D1*
Equality	P2		А		
constraints					
Using LP			A		
program					

Minimum	Y			D	
Connector					
problem					
Prim's		D	А		D1
algorithm -					
graphical					
Prim's		D	А		D1
algorithm -					
tabular					
Kruskal's		D	А		D1
algorithm					
Network Flows			А		
Max. flow -			А	D	D2
min. cut thm					
Supersources				D	D2*
& supersinks					
Augmenting				D*	D2
flows to find					
max. flow					
(labelling					
procedure)					
Arcs with				D*	D2*
upper or lower					
capacities					
Nodes with				D*	D2*
restricted					
capacity					
Route	Y	D*		D	D1
Inspection					
problem					
Transportation					D2*
problems					

			f	mng.uk	1
(North-West					
corner					
method)					
Introduction		D			
Stepping stone					D2*
method					
Dummy					D2*
locations					
Degeneracy					D2*
Formulation as					D2*
a LP problem					
Travelling	Y				
Salesman					
problem					
Practical &					D1*
classical					
problems					
Creating					D1*
network of					
shortest					
distances					
Nearest		D*		D	D1*
neighbour					
algorithm					
Lower bound		D*		D	D1*
algorithm					
Use of					D1*
spanning tree					
to find upper					
bound					
Use of					D1*
shortcuts to					
improve upper					
bound					