Scalar Product (4 pages; 19/9/20)
(1) The scalar (or 'dot') product of the vectors \underline{a} and \underline{b} (which can be 2 D or 3 D) is defined as:
$\underline{a} \cdot \underline{b}=|\underline{a}||\underline{b}| \cos \theta$, where θ is the angle between \underline{a} and \underline{b}.
Note that $\underline{b} \cdot \underline{a}=\underline{a} \cdot \underline{b}($ as $\cos (-\theta)=\cos \theta)$
(2) $\underline{i} \cdot \underline{i}=\underline{j} . \underline{j}=\underline{k} \cdot \underline{k}=1$
and $\underline{i} \cdot \underline{j}=\underline{j} \cdot \underline{k}=\underline{k} \cdot \underline{i}=0$
So $\left(a_{1} \underline{i}+a_{2} \underline{j}+a_{3} \underline{k}\right) \cdot\left(b_{1} \underline{i}+b_{2} \underline{j}+b_{3} \underline{k}\right)=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$
Hence $a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=|\underline{a}||\underline{b}| \cos \theta$
(3) $\underline{a} \cdot \underline{b}=0 \Rightarrow \underline{a}$ and \underline{b} are perpendicular (assuming that they aren't zero)
(4) One application of the scalar product is in determining the work done (W) by a force \underline{F}, which has component $|\underline{F}| \cos \theta$ in the direction of the displacement \underline{s} of the object in question, so that $W=\underline{F} \cdot \underline{s}$
(5) Example

A triangle is made up of the points $O(0,0), A(-3,4)$ and $B(12,5)$.
Find the angle between the sides $O A$ and $O B$
$\cos \theta=\frac{\overrightarrow{O A . O B}}{|\overrightarrow{O A \cdot} \cdot| \overrightarrow{O B} \mid}$
$\overrightarrow{O A} \cdot \overrightarrow{O B}=\binom{-3}{4} \cdot\binom{12}{5}=(-3)(12)+(4)(5)=-16$
$|\overrightarrow{O A}|=\sqrt{(-3)^{2}+4^{2}}=5 \quad \&|\overrightarrow{O B}|=\sqrt{12^{2}+5^{2}}=13$
Hence $\cos \theta=\frac{-16}{(5)(13)}=-0.24615$ and $\theta=104.2^{\circ}$
[Note: The scalar product often provides a more convenient alternative to using the Cosine rule.]

Note: In this example, the angle between the sides OA and OB is obtuse, and so 104.2° is the appropriate answer. In other situations, where the angle between two lines is to be found, the acute angle is usually given.

(6) Exercise 1

If $\overrightarrow{A B}=\binom{1}{-2} \& \overrightarrow{C D}=\binom{-1}{1}$, find the angle θ between $\overrightarrow{A B} \& \overrightarrow{C D}$, and the angle ϕ between $\overrightarrow{A B} \& \overrightarrow{D C}$.

Solution

$\overrightarrow{A B} \cdot \overrightarrow{C D}=|\overrightarrow{A B}||\overrightarrow{C D}| \cos \theta$
$\Rightarrow\binom{1}{-2} \cdot\binom{-1}{1}=\sqrt{5} \sqrt{2} \cos \theta$
$\Rightarrow \cos \theta=\frac{-1+(-2)}{\sqrt{10}}=\frac{-3}{\sqrt{10}}$
$\Rightarrow \theta=161.6^{\circ}$ (to 1 dp)
$\overrightarrow{A B} \cdot \overrightarrow{D C}=|\overrightarrow{A B}||\overrightarrow{D C}| \cos \phi$
$\Rightarrow\binom{1}{-2} \cdot\binom{1}{-1}=\sqrt{5} \sqrt{2} \cos \phi$
$\Rightarrow \cos \phi=\frac{1+2}{\sqrt{10}}=\frac{3}{\sqrt{10}}$
$\Rightarrow \phi=18.4^{\circ}$ (to 1 dp)

Note that $\cos (180-\theta)=-\cos \theta$, so that $\cos \phi=-\cos \theta$
$\Rightarrow \phi=180-\theta$ (in this context)
Thus, reversing the direction of one of the lines has the effect of changing the angle from θ to its supplement $180-\theta$ (see diagram below).

Exercise 2

Find the angle between the lines $2 x-y=3$ and $x+4 y=5$

Solution

The gradients of the two lines are 2 and $-\frac{1}{4}$
Their direction vectors are $\binom{1}{2} \&\binom{4}{-1}$
$\binom{1}{2} \cdot\binom{4}{-1}=\left|\binom{1}{2}\right|\left|\binom{4}{-1}\right| \cos \theta$
so that $\cos \theta=\frac{4-2}{\sqrt{5} \sqrt{17}}=0.21693$
and $\theta=77.471=77.5^{\circ}(1 d p)$
(7) Useful devices
(i) $\underline{a} \cdot \underline{a}=|\underline{a}|^{2}$
(ii) If $\underline{r} \cdot \underline{a}=0$ for all \underline{r}, then $\underline{a}=0$
(8) Consider a parallelogram with sides $\underline{u} \& \underline{v}$. Then , if the diagonals of the parallelogram are perpendicular,
$(\underline{u}+\underline{v}) \cdot(\underline{u}-\underline{v})=0$
Expanding this gives $\underline{u} \cdot \underline{u}=\underline{v} \cdot \underline{v}$; ie $|\underline{u}|^{2}=|\underline{v}|^{2}$, so that the two sides are equal; ie the parallelogram is a rhombus.

