Sample Variance (3 pages; 8/7/21)

(1) Strictly speaking, the variance of a sample is defined as the average squared deviation from the sample mean;

ie
$$s^2 = \frac{1}{n} \sum (x_i - \overline{x})^2$$

(and then the standard deviation is $s = \sqrt{\frac{1}{n}\sum(x_i - \overline{x})^2}$).

However, if the sample variance is intended to be an estimate for the population variance, then it can be shown that an unbiased estimate of the population variance is

$$s^2 = \frac{1}{n-1} \sum (x_i - \overline{x})^2$$

This means that, if we define S^2 to be the random variable

 $\frac{1}{n-1}\sum (X_i - \overline{X})^2$, then $E(S^2) = \sigma^2$, the population variance.

[See the Appendix for a proof of this. The fact that we are using \overline{x} (the sample mean) in the formula, instead of the population mean μ , means that the n deviations $x_i - \overline{x}$ are not independent (for example, $x_n - \overline{x}$ can be determined, if the other deviations are known). This suggests that an average of n deviations isn't appropriate, but doesn't constitute a proof that a divisor of n - 1 gives the right value.]

For exam purposes, $s^2 = \frac{1}{n-1} \sum (x_i - \overline{x})^2$ is usually preferred, even when there is no mention of it being an estimate for the population variance.

(2) Alternative, and generally more convenient formulae are:

$$s^{2} = \frac{1}{n} \sum (x_{i} - \overline{x})^{2} = \frac{1}{n} \{ (\sum x_{i}^{2}) - n\overline{x}^{2} \}$$

and $s^{2} = \frac{1}{n-1} \sum (x_{i} - \overline{x})^{2} = \frac{1}{n-1} \{ (\sum x_{i}^{2}) - n\overline{x}^{2} \}$ when the divisor of
 $n - 1$ is being used
Proof (for $s^{2} = \frac{1}{n} \sum (x_{i} - \overline{x})^{2}$)
 $s^{2} = \frac{1}{n} \sum (x_{i} - \overline{x})^{2}$
 $= \frac{1}{n} \{ \sum (x_{i}^{2} - 2x_{i}\overline{x} + \overline{x}^{2}) \}$
 $= \frac{1}{n} \{ (\sum x_{i}^{2}) - 2\overline{x}(\sum x_{i}) + n\overline{x}^{2} \}$
 $= \frac{1}{n} \{ (\sum x_{i}^{2}) - 2\overline{x}(n\overline{x}) + n\overline{x}^{2} \}$
 $= \frac{1}{n} \{ (\sum x_{i}^{2}) - n\overline{x}^{2} \}$

A useful check is as follows:

If all the *n* data items are the same, then each $x_i = \overline{x}$,

and $\sum x_i^2 = n\overline{x}^2$, so that $s^2 = 0$; as expected, since there is no variance amongst the x_i .

Notes

(i)
$$(\sum x_i^2) - n\overline{x}^2$$
 is often denoted S_{xx}
(ii) $(\sum x_i^2) - n\overline{x}^2$ can also be written as $(\sum x_i^2) - \frac{(\sum x_i)^2}{n}$

(iii) It is tempting to write $\frac{1}{n} \{ (\sum x_i^2) - n\overline{x}^2 \}$ as $\frac{1}{n} (\sum x_i^2) - \overline{x}^2$, but $\frac{1}{n} \{ (\sum x_i^2) - n\overline{x}^2 \}$ has the advantage that it can easily be converted to $\frac{1}{n-1} \{ (\sum x_i^2) - n\overline{x}^2 \}$ if necessary.

Appendix

 $S^2 = \frac{1}{n-1}([\Sigma X^2] - n\overline{X}^2)$ is an unbiased estimator for the population variance

Proof

$$E(S^{2}) = \frac{1}{n-1} \{ [\Sigma E(X^{2})] - nE(\overline{X}^{2}) \}$$

$$= \frac{1}{n-1} \{ nE(X^{2}) - nE(\overline{X}^{2}) \}$$

$$= \frac{n}{n-1} \{ E(X^{2}) - E(\overline{X}^{2}) \}$$
Now $\sigma^{2} = E(X^{2}) - \mu^{2}$, so that $E(X^{2}) = \sigma^{2} + \mu^{2}$
Also, $Var(\overline{X}) = E(\overline{X}^{2}) - \mu^{2}$,
and $Var(\overline{X}) = Var(\frac{X_{1} + \dots + X_{n}}{n}) = \frac{1}{n^{2}} Var(X_{1} + \dots + X_{n})$

$$= \frac{1}{n^{2}} (nVar(X_{i})) = \frac{\sigma^{2}}{n},$$
so that $E(\overline{X}^{2}) = \frac{\sigma^{2}}{n} + \mu^{2}$
Then $E(S^{2}) = \frac{n}{n-1} ([\sigma^{2} + \mu^{2}] - [\frac{\sigma^{2}}{n} + \mu^{2}])$

$$= \frac{n\sigma^{2}}{n-1} (1 - \frac{1}{n})$$