STEP/Polynomials Q1 (26/6/23)

Factorise $2x^3 - 33x^2 - 6x + 11$

Solution

If the factorisation is of the form $= (x + a)(2x^2 + bx + c)$,

then a must be \pm a factor of 11

Applying the factor theorem, this is found not to be the case.

Let
$$2x^3 - 33x^2 - 6x + 11 = (2x + a)(x^2 + bx + c)$$
,

Equating coefficients gives:

$$-33 = 2b + a$$
, $-6 = 2c + ab$ & $11 = ac$

Testing the possible combinations of $a \& c \ (\pm \ \text{the factors of} \ 11)$ shows that a = -1, c = -11 & b = -16

ie
$$2x^3 - 33x^2 - 6x + 11 = (2x - 1)(x^2 - 16x - 11)$$