STEP: Differential Equations (6 pages; 21/4/23)

See also Exercises - Differential Equations.

- (1) **Exercise**: Solve $\frac{dy}{dx} = x + y$ by:
- (a) making the substitution z = x + y
- (b) finding an integrating factor

Solution

(a)
$$\frac{dy}{dx} = x + y \Rightarrow \frac{d}{dx}(z - x) = z$$

$$\Rightarrow \frac{dz}{dx} - 1 = z$$

$$\Rightarrow \frac{dz}{dx} = z + 1$$

$$\Rightarrow \int \frac{1}{z+1} dz = \int dx$$

$$\Rightarrow \ln|z+1| = x - \ln C$$

$$\Rightarrow C(z+1) = e^x$$

$$\Rightarrow y = z - x = Ae^x - 1 - x$$

(b)
$$\frac{dy}{dx} = x + y \Rightarrow \frac{dy}{dx} - y = x$$

I.F. =
$$\exp \{ \int -1 \ dx \} = e^{-x}$$

Then
$$e^{-x} \frac{dy}{dx} - e^{-x}y = xe^{-x}$$

$$\Rightarrow \frac{d}{dx}(ye^{-x}) = xe^{-x}$$

$$\Rightarrow ye^{-x} = \int xe^{-x} dx = x(-e^{-x}) - \int -e^{-x} dx = -xe^{-x} - e^{-x} + C$$

$$\Rightarrow y = Ce^x - 1 - x$$

(2) To convert
$$x^2 \frac{d^2y}{dx^2} + ax \frac{dy}{dx} + by = 0$$

to
$$\frac{d^2y}{du^2} + c\frac{dy}{du} + dy = 0 \quad (*)$$

Exercise: Which of the following substitutions works:

$$u = e^x$$
 or $x = e^u$?

Solution

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$

Now,
$$u = e^x \Rightarrow \frac{du}{dx} = u$$
,

and
$$x = e^u \Rightarrow \frac{du}{dx} = \frac{1}{\left(\frac{dx}{du}\right)} = \frac{1}{x}$$

In the latter case, $\frac{dy}{dx} = \frac{dy}{du} \left(\frac{1}{x}\right)$, and $x \frac{dy}{dx} = \frac{dy}{du}$

Then
$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{du} \left(\frac{1}{x} \right) \right) = \left(\frac{d^2y}{du^2} \cdot \frac{du}{dx} \right) \left(\frac{1}{x} \right) + \frac{dy}{du} \left(-\frac{1}{x^2} \right)$$

$$=\frac{1}{x^2}\left(\frac{d^2y}{du^2}-\frac{dy}{du}\right)$$

So
$$x^2 \frac{d^2y}{dx^2} + ax \frac{dy}{dx} + by = 0$$
 becomes

$$\left(\frac{d^2y}{du^2} - \frac{dy}{du}\right) + a\frac{dy}{du} + by = 0$$

ie
$$\frac{d^2y}{du^2} + (a-1)\frac{dy}{du} + by = 0$$

(3) Exercise:

(i) Show that $\frac{dy}{dx} = f(\frac{y}{x})$ can potentially be solved by making a substitution.

(ii) Solve
$$\frac{dy}{dx} = \frac{x^3 + 4y^3}{3xy^2}$$
, $x > 0$

Solution

(i) Let
$$z = \frac{y}{x}$$
, so that $y = xz$ and $\frac{dy}{dx} = z + x \frac{dz}{dx}$

So
$$\frac{dy}{dx} = f(\frac{y}{x})$$
 becomes $z + x \frac{dz}{dx} = f(z)$

and
$$\int \frac{1}{f(z)-z} dz = \int \frac{1}{x} dx$$

(ii) Let
$$z = \frac{y}{x}$$
, so that $\frac{dy}{dx} = z + x \frac{dz}{dx}$, as in (i).

Then
$$z + x \frac{dz}{dx} = \frac{1}{3z^2} + \frac{4z}{3}$$

and
$$x \frac{dz}{dx} = \frac{1}{3z^2} + \frac{z}{3}$$

so that
$$3\int \frac{1}{\frac{1}{z^2}+z} dz = \int \frac{1}{x} dx$$

and
$$lnx = \int \frac{3z^2}{1+z^3} dz = \ln(1+z^3) + lnC$$

$$\Rightarrow x = \mathcal{C}(1+z^3) \ [\mathcal{C} > 0]$$

$$\Rightarrow (\frac{y}{x})^3 = Ax - 1 \left[A = \frac{1}{C}\right]$$

$$\Rightarrow$$
 $y^3 = (Ax - 1)x^3$

[Further example:
$$(x - y)(x + y) \frac{dy}{dx} = xy$$
]

(4) (i) Extend this approach to DEs related to $\frac{dy}{dx} = x + y$

(ii) Solve
$$\frac{dy}{dx} = (x+y)(x+y-2)$$

Solution

(i) If
$$z = x + y$$
, then $\frac{dz}{dx} = 1 + \frac{dy}{dx}$,

so that
$$\frac{dy}{dx} = f(x + y)$$
 becomes $\frac{dz}{dx} - 1 = f(z)$

and $\frac{dz}{dx} = f(z) + 1$ is potentially solvable by separation of variables.

[Similarly for
$$\frac{dy}{dx} = f(ax + by)$$
; eg $\frac{dy}{dx} = \frac{-(1+2y+4x)}{1+y+2x}$]

(ii) As the RHS is a function of x + y, let z = x + y

Then
$$\frac{dz}{dx} - 1 = z(z-2)$$
,

so that
$$\frac{dz}{dx} = z^2 - 2z + 1 = (z - 1)^2$$

$$\Rightarrow \int \frac{1}{(z-1)^2} dz = \int dx$$

$$\Rightarrow -\frac{1}{(z-1)} = x + C$$

$$\Rightarrow x + y - 1 = -\frac{1}{(x+C)}$$

$$\Rightarrow y = 1 - x - \frac{1}{(x+C)}$$

(5) Substitutions

$$\frac{dy}{dx} = f(x+y)$$

Let z = x + y, so that $\frac{dy}{dx} = \frac{dz}{dx} - 1$ can be obtained

 $\Rightarrow \frac{dz}{dx} = f(z) + 1$ (& separation of variables can be applied)

$$\frac{dy}{dx} = f\left(\frac{x}{y}\right)$$

Let $z = \frac{x}{y}$, so that $\frac{dy}{dx} = z + x \frac{dz}{dx}$ can be obtained

 $\Rightarrow x \frac{dz}{dx} = f(z) - z$ (& separation of variables can be applied)

(6) Exercise: Solve $\frac{dy}{dx} + xy = xy^2$ by means of the substitution $z = \frac{1}{y}$

Solution

$$y = \frac{1}{z} \Rightarrow \frac{dy}{dx} = -\frac{1}{z^2} \frac{dz}{dx}$$

so that
$$\frac{1}{y^2} \frac{dy}{dx} = -\frac{dz}{dx}$$

and
$$\frac{dy}{dx} + xy = xy^2$$
 becomes $-\frac{dz}{dx} + xz = x$

and then an I.F. can be found.

Notes

(i) So $z = \frac{1}{y}$ is potentially useful for a DE of the form $\frac{1}{y^2} \frac{dy}{dx} + \cdots$

(ii) In general, $y^n \frac{dy}{dx}$ suggests $z = y^{n+1}$

(and $y^{-n} \frac{dy}{dx}$ suggests $z = y^{-n+1}$)

In fact, $\frac{dy}{dx} + P(x)y = Q(x)y^n$ can be transformed to

$$\frac{dz}{dx} - (n-1)P(x) \cdot z = -(n-1)Q(x)$$
 by $z = y^{-n+1}$