STEP/Counting Q10 (11/7/23)

(i) How many ways are there of writing the pair of integers (i, j), given that $1 \leq i<j \leq n$?
(ii) Show that there are $n(n-1)(n-2)$ ways of writing the integers (i, j, k, l), given that $1 \leq i<j \leq n$ and
$1 \leq k<l \leq n$, and such that exactly one of the numbers is repeated (eg (1,2,1,3) or (1,2,2,3), but not (1,2,1,2))

Solution
(i) Method 1
${ }^{n} C_{2}=\frac{1}{2} n(n-1)$

Method 2

$i=1: n-1$ possible values for j
$i=2: n-2$ possible values for j
$\ldots i=n-1$: 1 possible value for j
giving a total of $(n-1)+(n-2)+\cdots 1=\frac{1}{2}(n-1) n$

(ii) Method 1

Category A: The repeated numbers are $i \& k(\operatorname{eg}(4,7,4,9)$ or (4,9,4,7))

Category B_{1} : The repeated numbers are $i \& l(\mathrm{eg}(4,7,2,4)$
Category B_{2} : The repeated numbers are $j \& k(e g(2,4,4,7))$
Category C: The repeated numbers are $j \& l(\mathrm{eg}(1,4,2,4)$ or $(2,4,1,4)$)

To count the number of items in Category A; initially with $j<l$:
For items of the form $(1, j, 1, l)$:

$$
{ }^{n-1} C_{2}=\frac{1}{2}(n-1)(n-2)
$$

For items of the form $(2, j, 2, l)$:
${ }^{n-2} C_{2}=\frac{1}{2}(n-2)(n-3)$
... For items of the form $(n-2, j, n-2, l): 1$
So total number of items in Category A, allowing for both $j<l$ and $l<j$ is $2 \sum_{r=1}^{n-2} \frac{1}{2}(n-r)(n-r-1)$

Writing $k=n-r-1$, this becomes
$\sum_{k=n-2}^{1} k(k-1)$
or $\sum_{k=1}^{n-2} k(k-1)=\frac{1}{6}(n-2)(n-1)(2 n-3)+\frac{1}{2}(n-2)(n-1)$
$=\frac{1}{6}(n-1)(n-2)[2 n-3+3]=\frac{n}{3}(n-1)(n-2)$

To count the number of items in Category B_{1} :
Items of the form $(2, j, k, 2):(n-2) .1$
Items of the form $(3, j, k, 3):(n-3) .2$
... Items of the form $(n-1, j, k, n-1): 1 .(n-2)$
And the number of items in Category B_{2} will be the same (as $(2,4,4,7)$ corresponds to $(4,7,2,4)$ etc).

So total number of items in Category B is

$$
\begin{aligned}
& 2 \sum_{r=1}^{n-2} r(n-r-1)=2(n-1) \cdot \frac{1}{2}(n-2)(n-1) \\
& -\frac{2}{6}(n-2)(n-1)(2 n-3) \\
& =\frac{1}{3}(n-1)(n-2)[3 n-3-(2 n-3)] \\
& =\frac{n}{3}(n-1)(n-2)
\end{aligned}
$$

To count the number of items in Category C:
This will be the same as for Category A , with ${ }^{n-1} C_{2}$ items of the form (i, r, k, r).

Thus the total number of items in Categories A, B \& C (together) is $3 \times \frac{n}{3}(n-1)(n-2)=n(n-1)(n-2)$
[eg for $n=3, n(n-1)(n-2)=6$:
$(1,2)(1,3),(1,2)(2,3),(1,3)(1,2),(1,3)(2,3),(2,3)(1,2)$, $(2,3)(1,3)]$

Method 2

For each choice of repeated number, there are ${ }^{n-1} C_{2}$ ways of choosing the other two numbers, and in each case exactly one of the categories A, B or C must occur: Suppose, for example, that the repeated number is 4 . Then the other two numbers will either both be less than 4 , or both be greater than 4 , or lie on either side of 4 (corresponding to the categories $\mathrm{C}, \mathrm{A} \& \mathrm{~B}$). But for each case there are two possibilities: eg $(4,7)(4,8)$ or $(4,8)(4,7)$

So the total number of cases is $n \times 2 \times{ }^{n-1} C_{2}=2 n . \frac{(n-1)(n-2)}{2}$ $=n(n-1)(n-2)$
[Thus the categories A, B \& C are useful for the purpose of establishing all the possible cases, but there is a simpler way of counting the cases.]

Method 3

There are $\left({ }^{n} C_{2}\right)^{2}$ ways of writing (i, j, k, l), if $1 \leq i<j \leq n$ and $1 \leq k<l \leq n$, but any possibilities are allowed; ie including $P:(1,2)(1,2)$ [where two distinct numbers are repeated] and Q : $(1,2)(3,4)$ [where no numbers are repeated]

The number of P cases is ${ }^{n} C_{2}$, and the number of Q cases is: ${ }^{n} C_{2} \times{ }^{n-2} C_{2}$

Hence required number is:

$$
\begin{aligned}
& \left({ }^{n} C_{2}\right)^{2}-{ }^{n} C_{2}-{ }^{n} C_{2} \times{ }^{n-2} C_{2} \\
& ={ }^{n} C_{2}\left({ }^{n} C_{2}-1-{ }^{n-2} C_{2}\right) \\
& =\frac{n(n-1)}{2}\left(\frac{n(n-1)}{2}-1-\frac{(n-2)(n-3)}{2}\right) \\
& =\frac{n(n-1)}{4}\left(n^{2}-n-2-\left(n^{2}-5 n+6\right)\right) \\
& =\frac{n(n-1)}{4}(4 n-8) \\
& =n(n-1)(n-2)
\end{aligned}
$$

