STEP: Algebra Methods (5 pages; 23/1/18) including Polynomials
(1) Rearranging into the form $f(x)=0$
(it being generally easiest to aim for a target of 0 ; especially where $f(x)$ is a fraction, so that only the numerator has to equal 0)

Example: Show that $\frac{\sec \theta+1-\tan \theta}{\sec \theta+1+\tan \theta} \equiv \sec \theta-\tan \theta$
Solution: To show that $\frac{\sec \theta+1-\tan \theta}{\sec \theta+1+\tan \theta}-(\sec \theta-\tan \theta) \equiv 0$:
LHS $=\frac{(\sec \theta+1-\tan \theta)-(\sec \theta-\tan \theta)(\sec \theta+1+\tan \theta)}{\sec \theta+1+\tan \theta}$
Numerator $=(\sec \theta+1-\tan \theta)$

$$
\begin{aligned}
& -(\sec \theta-\tan \theta)(\sec \theta+\tan \theta)-(\sec \theta-\tan \theta) \\
& =(\sec \theta+1-\tan \theta)-\left(\sec ^{2} \theta-\tan ^{2} \theta\right)-(\sec \theta-\tan \theta) \\
& =(\sec \theta+1-\tan \theta)-1-(\sec \theta-\tan \theta)=0
\end{aligned}
$$

(2) Forcing into the form of the required expression

Example: Show that $\frac{\sec \theta+1-\tan \theta}{\sec \theta+1+\tan \theta} \equiv \sec \theta-\tan \theta$
Solution: $L H S=(\sec \theta-\tan \theta) \cdot \frac{(\sec \theta+1-\tan \theta)}{(\sec \theta-\tan \theta)(\sec \theta+1+\tan \theta)}$
Then $(\sec \theta-\tan \theta)(\sec \theta+\tan \theta)=\sec ^{2} \theta-\tan ^{2} \theta=1$, so that $(\sec \theta-\tan \theta)(\sec \theta+1+\tan \theta)=1+(\sec \theta-\tan \theta)$, and hence $(A)=\sec \theta-\tan \theta$
(3) To deal with (say) 3 equations of the form
$f(x, y, z, \ldots)=0, g(x, y, z, \ldots)=0 \& h(x, y, z, \ldots)=0$,
where we are not interested in x, and where x can be made the subject of two of the equations (say the 1st two), rewrite those equations as $x=A(y, z, \ldots) \& x=B(y, z, \ldots)$, to obtain $A(y, z, \ldots)=B(y, z, \ldots)$ and $h(A(y, z, \ldots), y, z, \ldots)=0$ Example (to illustrate the 1st part of the process):

Given that $\frac{b c-a}{1-c}=7 \& \frac{b^{2} c-a^{2}}{1-c}=51$, show that $\frac{a+7}{b+7}=\frac{a^{2}+51}{b^{2}+51}$ (subject to any necessary conditions)

Solution

$\frac{b c-a}{1-c}=7 \Rightarrow b c-a=7-7 c \Rightarrow c(b+7)=7+a$
$\Rightarrow c=\frac{a+7}{b+7}$ (provided $b \neq-7$), and replacing $a, b \& 7$ with $a^{2}, b^{2} \& 51$ gives $c=\frac{a^{2}+51}{b^{2}+51}$, so that $\frac{a+7}{b+7}=\frac{a^{2}+51}{b^{2}+51}$
(4) Converting from parametric to Cartesian form
(a) Make t the subject of one of the equations for x or y, and substitute for t in the other equation.
(b) Combine the equations for $x \& y$ in some way, so as to make t the subject (see Example (i) below)
(c) Make $f(t)$ the subject of both of the equations for $x \& y$, and equate the two expressions, leaving a single t in the resulting equation (see Example (ii) below)

Examples

(i) $x=2 t+t^{2}, y=2 t^{2}+t^{3}$
(ii) $x=5 t^{2}-4, y=9 t-t^{3}$

Solutions

(i) $x=2 t+t^{2}, y=2 t^{2}+t^{3} \Rightarrow x=t(2+t), y=t^{2}(2+t)$

So $\frac{y}{x}=t$; then $x=2\left(\frac{y}{x}\right)+\left(\frac{y}{x}\right)^{2}$ and hence $x^{3}=2 x y+y^{2}$
(ii) $x=5 t^{2}-4, y=9 t-t^{3}=t\left(9-t^{2}\right)$; then $t^{2}=\frac{x+4}{5}$ and also $\frac{y}{t}-9=-t^{2}$; so $\frac{x+4}{5}=9-\frac{y}{t}$ and hence $\frac{y}{t}=9-\frac{x+4}{5}=\frac{45-x-4}{5}=$ $\frac{41-x}{5}$, so that $t=\frac{5 y}{41-x}$; then, substituting back into $x=5 t^{2}-4$, we have $x=5\left(\frac{5 y}{41-x}\right)^{2}-4$, and hence $(x+4)(41-x)^{2}=125 y^{2}$
(5) $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$
$\& x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$
In general, for all integer $n>1$:
$x^{n}-y^{n}=(x-y)\left(x^{n-1}+x^{n-2} y+\cdots+x y^{n-2}+y^{n-1}\right)$
[Note that, writing $f(x)=x^{n}-y^{n}, f(y)=0$, so that $x-y$ has to be a factor.]

But $x^{n}+y^{n}=(x+y)\left(x^{n-1}-x^{n-2} y+\cdots-x y^{n-2}+y^{n-1}\right)$ only
for odd n. (Note the alternating signs in the 2 nd bracket; consider for example $x=y=1$.)
[Note that $x^{n}+y^{n} \geq 0$ when n is even, and $x^{n}+y^{n}=0$ only when $x=y=0$ (ie not for all $x \& y$); and so there are no linear factors.]
(6) Factorisations of polynomials
(i) Factor theorem (consider factorisation of constant term)
(ii) Avoid long division (too slow)
(iii) (a) deduce one term of the divisor at a time (could set out as a table)
(b) equating coefficients

Example: Factorise $2 x^{3}-33 x^{2}-6 x+11$

Solution

If the factorisation is of the form $=(x+a)\left(2 x^{2}+b x+c\right)$, then a must be \pm a factor of 11

Applying the factor theorem this is found not to be the case.
Let $2 x^{3}-33 x^{2}-6 x+11=(2 x+a)\left(x^{2}+b x+c\right)$,
Equating coefficients gives:
$-33=2 b+a,-6=2 c+a b \quad \& 11=a c$
Testing the possible combinations of $a \& c(\pm$ the factors of 11) shows that $a=-1, c=-11 \& b=-16$ ie $2 x^{3}-33 x^{2}-6 x+11=(2 x-1)\left(x^{2}-16 x-11\right)$
(7) $(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(a b+a c+b c)$

Other expansions such as $(a+b+c)^{3}=\left(a^{3}+b^{3}+c^{3}\right)+$ $3\left(a^{2} b+a^{2} c+b^{2} a+b^{2} c+c^{2} a+c^{2} b\right)+6 a b c$
can be found by considering symmetry and the number of combinations of each type of term.

For example, there are 3 ways of creating an $a^{2} b$ term: 3 [number of ways of choosing the $b] \times 1$ [number of ways of choosing two a s from the remaining 2 brackets].
(8) Beware of losing a solution of an equation by dividing out a factor.
(9) Beware of spurious solutions: see STEP Problems/D/2
(10) Any rational roots of $x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}=0$ are integers, if the a_{i} are integers. [see STEP 2011, P3, Q2 (1st part)]

