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Question 1

What does it mean to say that a number x is irrational?

It means that we cannot write x = m/n where m and n are integers with n 6= 0.

Prove by contradiction statements A and B below, where p and q are real numbers.

A: If pq is irrational, then at least one of p and q is irrational.

B: If p+ q is irrational, then at least one of p and q is irrational.

We first prove statement A.

Assume that pq is irrational, but neither p nor q is irrational, so that both p and q are
rational. But then pq is the product of two rational numbers, so is rational. This contradicts
that assumption that pq is irrational. So statement A is true.

Now for statement B we argue similarly.

Assume that p + q is irrational, but neither p nor q is irrational, so that both p and q are
rational. But then p+ q is the sum of two rational numbers, so is rational. This contradicts
the assumption that p+ q is irrational. So statement B is true.

Disprove by means of a counterexample statement C below, where p and q are real numbers.

C: If p and q are irrational, then p+ q is irrational.

One example is p =
√

2, q = −
√

2.

If the numbers e, π, π2, e2 and eπ are irrational, prove that at most one of the numbers
π + e, π − e, π2 − e2, π2 + e2 is rational.

We assume that the five given numbers are, indeed, irrational.

We have (π + e) + (π − e) = 2π, which is irrational (if p is irrational, then so is 2p). So by
statement B, at least one of π + e and π − e is irrational.

Similarly, (π2 + e2) + (π2 − e2) = 2π2, which is irrational. So by statement B again, at least
one of π2 + e2 and π2 − e2 is irrational.

Assume that both π + e and π2 − e2 are rational. Then

π − e =
π2 − e2

π + e

would also be rational. But we know that at least one of π + e and π − e is irrational, so
π + e and π2 − e2 cannot both be rational. Similarly, we can’t have both π − e and π2 − e2

rational.

Thus if two of the four numbers are rational, they must be π2 + e2 and one of π ± e.
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Assume that π2 + e2 and π + e are rational. Then (π + e)2 = (π2 + e2) + 2eπ is the square
of a rational number, so is rational. But then 2eπ = (π + e)2 − (π2 + e2) would be rational,
contradicting the irrationality of eπ. Thus we cannot have both π2 + e2 and π + e rational.

Similarly, if π2 + e2 and π − e are both rational, we would have 2eπ = (π2 + e2) − (π − e)2

being rational, again a contradiction.

Thus at most one of these four numbers is rational.
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Question 2

The variables t and x are related by t = x +
√
x2 + 2bx+ c, where b and c are constants

and b2 < c. Show that
dx

dt
=
t− x
t+ b

,

and hence integrate
1√

x2 + 2bx+ c
.

We have, differentiating the given expression with respect to x:

dt

dx
= 1 +

2x+ 2b

2
√
x2 + 2bx+ c

= 1 +
2(x+ b)

2(t− x)

=
(t− x) + (x+ b)

t− x

=
t+ b

t− x
.

The required result follows on taking the reciprocal of both sides:

dx

dt
=

1

dt/dx
=
t− x
t+ b

.

To find the integral, we use the given substitution for x, yielding:∫
1√

x2 + 2bx+ c
dx =

∫
1

t− x
dx

dt
dt

=

∫
1

t− x
t− x
t+ b

dt

=

∫
1

t+ b
dt

= ln |t+ b|+ k

= ln
∣∣x+ b+

√
x2 + 2bx+ c

∣∣+ k

= ln
(
x+ b+

√
x2 + 2bx+ c

)
+ k

with the last line following as x2 + 2bx+ c > x2 + 2bx+ b2 = (x+ b)2, so the parenthesised
expression is positive.

Verify by direct integration that your result holds also in the case b2 = c if x + b > 0 but
that your result does not hold in the case b2 = c if x+ b < 0.

With b2 = c, we have the integral∫
1√

x2 + 2bx+ b2
dx =

∫
1√

(x+ b)2
dx

=

∫
1

|x+ b|
dx
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We now consider the two cases discussed in the question. Firstly, if x+ b > 0, then we have∫
1√

x2 + 2bx+ b2
dx =

∫
1

|x+ b|
dx

=

∫
1

x+ b
dx

= ln(x+ b) + k′

(we don’t need absolute value signs as x+ b is positive), whereas before we had

ln
(
x+ b+

√
x2 + 2bx+ c

)
+ k = ln

(
x+ b+

√
(x+ b)2

)
+ k

= ln
(
x+ b+ |x+ b|

)
+ k

= ln
(
x+ b+ (x+ b)

)
+ k

= ln(2(x+ b)) + k

= ln(x+ b) + ln 2 + k

Thus our earlier formula works in the case that b2 = c and x + b > 0, where we take
k′ = k + ln 2 (which we may do, as they are arbitrary constants).

Next, when x+ b < 0, direct integration yields:∫
1√

x2 + 2bx+ b2
dx =

∫
1

|x+ b|
dx

=

∫
− 1

x+ b
dx

= − ln |x+ b|+ k′

= − ln(−(x+ b)) + k′

as x+ b < 0. But now our earlier formula yields

ln
(
x+ b+

√
x2 + 2bx+ c

)
+ k = ln

(
x+ b+

√
(x+ b)2

)
+ k

= ln
(
x+ b+ |x+ b|

)
+ k

= ln
(
x+ b− (x+ b)

)
+ k

= ln 0 + k

which is not even defined. So the earlier result fails to give any answer in the case b2 = c
when x+ b < 0.

STEP I 2008 Mark Scheme September 4, 2008 Page 5

STEP I STEP Solutions June 2008

7

rushtn
Rectangle



Question 3

Prove that, if c > a and d > b, then

ab+ cd > bc+ ad. (∗)

We have

ab+ cd− bc− ad = (a− c)b+ (c− a)d

= (c− a)(d− b)
> 0 as c > a and d > b,

from which (∗) follows immediately.

(i) If x > y, use (∗) to show that x2 + y2 > 2xy.

If, further, x > z and y > z, use (∗) to show that z2 +xy > xz+ yz and deduce that
x2 + y2 + z2 > xy + yz + zx.

Prove that the inequality x2 + y2 + z2 > xy + yz + zx holds for all x, y and z.

Letting a = b = y and c = d = x in (∗), which we can do as x > y, yields y2 + x2 > yx+ yx,
that is

x2 + y2 > 2xy. (1)

Next, letting a = b = z, c = x and d = y in (∗) gives

z2 + xy > zx+ zy (2)

as we wanted.

Now adding the inequalities (1) and (2) gives us

x2 + y2 + z2 + xy > 2xy + yz + zx.

Subtracting xy from both sides yields our desired result:

x2 + y2 + z2 > xy + yz + zx. (3)

Finally, we have now proved inequality (3) when x > y > z, but we need to show that it is
true whatever the values of x, y and z. But the inequality is symmetric in x, y and z, meaning
that rearranging (permuting) the variables in any way does not change the statement. For
example, if we swap x and z, we get

z2 + y2 + x2 > zy + yx+ xz,

which is exactly the same inequality.

So we can assume that the the values of x, y and z we are given satisfy x > y > z, without
changing the statement of the inequality, and we know that the inequality holds in this case.
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(ii) Show similarly that the inequality
s

t
+
t

r
+
r

s
> 3 holds for all positive r, s and t.

We begin by assuming that r > s > t > 0, and set c = r, a = s, d = 1/s and b = 1/r. Then
by our assumption, we see that c > a and d > b, so (∗) gives

s

r
+
r

s
> 1 + 1. (4)

Now set c = s, a = t, d = 1/t and b = 1/r, and note that c > a and d > b, so that (∗) gives

t

r
+
s

t
> 1 +

s

r
. (5)

Adding the inequalities (4) and (5) gives

s

r
+
r

s
+
t

r
+
s

t
> 1 + 1 + 1 +

s

r
,

so that
r

s
+
t

r
+
s

t
> 1 + 1 + 1, (6)

as we want.

Now this inequality is true for r > s > t, and by exactly the same argument it will also hold
if s > t > r or t > r > s, by cycling the variables.

If r > t > s, then we have to start again, but the argument is almost identical.

We set c = r, a = t, d = 1/t and b = 1/r. Then by our assumption, we see that c > a and
d > b, so (∗) gives

t

r
+
r

t
> 1 + 1. (7)

We now set c = r, a = s, d = 1/s and b = 1/t, and note that c > a and d > b, so that (∗)
gives

t

r
+
s

t
> 1 +

s

r
. (8)

Once again, adding these two inequalities gives inequality (6), and by cycling the variables,
it is also true if t > s > r or s > r > t.

We have now shown (6) to be true for all six possible orderings of r, s and t, so it is true for
all possible (positive) values of r, s and t.
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Question 4

A function f(x) is said to be convex in the interval a < x < b if f ′′(x) > 0 for all x in this
interval.

(i) Sketch on the same axes the graphs of y = 2
3

cos2 x and y = sinx in the interval
0 6 x 6 2π.

The function f(x) is defined for 0 < x < 2π by

f(x) = e
2
3

sinx.

Determine the intervals in which f(x) is convex.

We note that cos2 x = 1
2
(cos 2x + 1) from the double angle formula, so that the graph of

2
3

cos2 x is a translated, stretched version of y = cos 2x.

y = 2
3

cos2 x

y = sinx

0

−1

2
3

1

π
2

π 3π
2

2πx1 x2

Now we have

f(x) = e
2
3

sinx

f ′(x) = (2
3

cosx)e
2
3

sinx

f ′′(x) = (4
9

cos2 x− 2
3

sinx)e
2
3

sinx

= 2
3
(2

3
cos2 x− sinx)e

2
3

sinx.

As e
2
3

sinx > 0 for all x, we have

f ′′(x) > 0 if and only if 2
3

cos2 x− sinx > 0.

But we have just drawn a graph of the two functions y = 2
3

cos2 x and y = sinx, so we see
that f(x) > 0 when 0 6 x 6 x1 and when x2 6 x 6 2π, where x1 and x2 are the x-coordinates
of the points of intersection of the two graphs. So all we need to do is to solve the equation

2
3

cos2 x− sinx = 0

to determine the values of x1 and x2.

STEP I 2008 Mark Scheme September 4, 2008 Page 8

STEP I STEP Solutions June 2008

10

rushtn
Rectangle



Using cos2 x = 1− sin2 x and then factorising gives

2
3

cos2 x = sinx

⇐⇒ 2
3
(1− sin2 x) = sinx

⇐⇒ 2− 2 sin2 x = 3 sin x

⇐⇒ 2 sin2 x+ 3 sinx− 2 = 0

⇐⇒ (2 sinx− 1)(sinx+ 2) = 0

⇐⇒ sinx = 1
2

Therefore x1 = π
6

and x2 = 5π
6

, and the function f(x) is convex in the intervals 0 < x < π
6

and 5π
6
< x < 2π.

(ii) The function g(x) is defined for 0 < x < 1
2
π by

g(x) = e−k tanx.

If k = sin 2α and 0 < α < π/4, show that g(x) is convex in the interval 0 < x < α,
and give one other interval in which g(x) is convex.

We have

g(x) = e−k tanx

g′(x) = −k sec2 x.e−k tanx

g′′(x) = (k2 sec4 x− 2k sec2 x tanx)e−k tanx

= k sec2 x(k sec2 x− 2 tanx)e−k tanx.

Therefore g′′(x) > 0 when k sec2 x− 2 tanx > 0, that is, when k tan2 x− 2 tanx+ k > 0. We
can solve the equality k tan2 x− 2 tanx+ k = 0 using the quadratic formula:

tanx =
2±
√

4− 4k2

2k

=
1±
√

1− k2

k

=
1±

√
1− sin2 2α

sin 2α
substituting k = sin 2α

=
1± cos 2α

sin 2α
.

Thus we have two possibilities:

tanx =
1 + cos 2α

sin 2α
=

2 cos2 α

2 sinα cosα
= cotα = tan(π

2
− α)

or

tanx =
1− cos 2α

sin 2α
=

2 sin2 α

2 sinα cosα
= tanα.

Then, since 0 < α < π
4

and 0 < x < π
2
, we have x = α or x = π

2
− α.

It follows, since k > 0 and α < π
2
−α, that g(x) is convex, that is, g′′(x) > 0, when 0 < x < α

or when π
2
− α < x < π

2
. (In more detail, when x ≈ 0, g′′(x) ≈ k > 0, and when x ≈ π

2
,

g′′(x) ≈ k tan2 x > 0.)
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Question 5

The polynomial p(x) is given by

xn +
n−1∑
r=0

arx
r ,

where a0, a1, . . . , an−1 are fixed real numbers and n > 1. Let M be the greatest value of
|p(x)| for |x| 6 1. Then Chebyshev’s theorem states that M > 21−n.

(i) Prove Chebyshev’s theorem in the case n = 1 and verify that Chebyshev’s theorem
holds in the following cases:

(a) p(x) = x2 − 1
2
;

(b) p(x) = x3 − x.

In the case n = 1, Chebyshev’s theorem states:

Let p(x) be the polynomial x+ a0, and let M be the greatest value of |p(x)| for
|x| 6 1. Then M > 1.

If a0 > 0, then when x = 1, p(1) = 1 + a0 > 1, so M > 1.

If a0 < 0, then when x = −1, p(−1) = −1 + a0 < −1, so |p(−1)| > 1 and M > 1.

Finally, if a0 = 0, then p(x) = x, so |p(x)| = |x|. It follows that |p(x)| = |x| 6 1 when
|x| 6 1 and p(1) = 1, so M = 1.

Thus in all cases M > 1.

Now to verify the theorem in the specified cases. The obvious approach is to find the
maximum absolute value of the function over the interval. It is important to verify that the
function’s maximum absolute value really is at least 21−n in both cases.

(a) p(x) = x2 − 1
2

is a quadratic whose minimum value is at x = 0. So we only need to
consider the value of p(0) and the values of p(x) at the endpoints of the interval: p(−1)
and p(1). We have p(0) = −1

2
, p(−1) = p(1) = 1

2
, so −1

2
6 p(x) 6 1

2
, and hence

|p(x)| 6 1
2

= 2−1 with the maximum value taken on by |p(x)| being 1
2
.

In this case, where n = 2, Chebyshev’s theorem states that M > 2−1. Since we have
M = 2−1 in this case, Chebyshev’s theorem holds.

(b) Given p(x) = x3 − x we first look for stationary points. We have p′(x) = 3x2 − 1
so there are stationary points at x = ±1/

√
3. We thus evaluate p(x) at these points

and at the endpoints x = ±1. We have p(−1) = p(1) = 0, p(−1/
√

3) = 2/3
√

3 and
p(1/
√

3) = −2/3
√

3. Hence |p(x)| 6 2/3
√

3, so that M = 2/3
√

3.

As n = 3, we wish to show that M > 1
4
. But M2 = 4

27
> 4

64
= 1

16
, so M > 1

4
as required.

A second approach, which is simpler and more direct, is to observe that all we need to do
is to find some value of x in the interval −1 6 x 6 1 for which |p(x)| > 21−n, for then we
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know that the maximum value of |p(x)| in this interval will be at least that. In (a), we have
|p(1)| = 1

2
> 2−1 and in (b), |p(1

2
)| = |1

8
− 1

2
| = 3

8
> 2−2. So we are done.

(ii) Use Chebyshev’s theorem to show that the curve y = 64x5+25x4−66x3−24x2+3x+1
has at least one turning point in the interval −1 6 x 6 1.

Let p(x) = x5 + 1
64

(25x4 − 66x3 − 24x2 + 3x + 1) = y/64. The turning points of p(x) are
the same as the turning points of y. Then if we let M be the greatest value of |p(x)| for
|x| 6 1, we have M > 2−4 = 1

16
. Let x0 be the value of x in the interval −1 6 x 6 1 for

which |p(x0)| = M , i.e., where |p(x)| takes its maximum value. (If there is more than one
such point, choose any of them to be x0.)

Now p(−1) = 1
64

and p(1) = 3
64

, and so |p(1)| < 1
16

and |p(−1)| < 1
16

. But since |p(x0)| > 1
16

,
we cannot have x0 = ±1, so −1 < x0 < 1.

Then x0 must be a local maximum or a local minimum: if p(x0) > 1
16

then it is at the the
greatest value of p(x) in the interval −1 6 x 6 1 (and is not at an endpoint); similarly, if
p(x0) 6 − 1

16
, then x0 is at the least value. Either way, x0 is a turning point as we wanted.

STEP I 2008 Mark Scheme September 4, 2008 Page 11

STEP I STEP Solutions June 2008

13

rushtn
Rectangle



Question 6

The function f is defined by

f(x) =
ex − 1

e− 1
, x > 0,

and the function g is the inverse function to f, so that g(f(x)) = x. Sketch f(x) and g(x)
on the same axes.

x

y y = f(x)

y = g(x)

0

Verify, by evaluating each integral, that∫ 1
2

0

f(x) dx+

∫ k

0

g(x) dx =
1

2(
√

e + 1)
,

where k =
1√

e + 1
, and explain this result by means of a diagram.

We find g(x), the inverse of f(x), as follows, noting that y = f(x) if and only if x = g(y):

y = f(x) =
ex − 1

e− 1
⇐⇒ (e− 1)y = ex − 1

⇐⇒ ex = (e− 1)y + 1

⇐⇒ x = ln
(
(e− 1)y + 1

)
so that g(x) = ln

(
(e− 1)x+ 1

)
.
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Now we can evaluate the integrals. We have∫ 1
2

0

f(x) dx =

∫ 1
2

0

ex − 1

e− 1
dx

=
1

e− 1

[
ex − x

] 1
2

0

=
1

e− 1

(
(e

1
2 − 1

2
)− (1− 0)

)
=

1

e− 1

(
e

1
2 − 3

2

)
=

2
√

e− 3

2(e− 1)
.

For g(x), we can either use substitution and the standard result
∫

lnx dx = x lnx− x+ c or
integration by parts, effectively deriving the result. We demonstrate both methods.

Using substitution, we set u = (e−1)x+1. When x = 0, u = 1, and when x = k = 1/(
√

e+1),
we can easily calculate that u = (

√
e− 1) + 1 =

√
e. Finally, du/dx = e− 1. Thus∫ k

0

g(x) dx =

∫ k

0

ln
(
(e− 1)x+ 1

)
dx

=

∫ √e

1

lnu
dx

du
du

=

∫ √e

1

1

e− 1
lnu du

=
1

e− 1

[
u lnu− u

]√e

1

=
1

e− 1

(
(
√

e ln
√

e−
√

e)− (ln 1− 1)
)

=
1

e− 1

(
1− 1

2

√
e
)

=
2−
√

e

2(e− 1)
.

Alternatively we can use integration by parts. We first note that

ln((e− 1)k + 1) = ln

(
e− 1√
e + 1

+ 1

)
= ln

(
(
√

e− 1) + 1
)

= ln(
√

e)

= 1
2
.
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Then we can evaluate our integral as follows:∫ k

0

g(x) dx =

∫ k

0

1. ln((e− 1)x+ 1) dx

=
[
x ln((e− 1)x+ 1)

]k
0
−
∫ k

0

x

(
e− 1

(e− 1)x+ 1

)
dx

= k ln((e− 1)k + 1)−
∫ k

0

(e− 1)x+ 1− 1

(e− 1)x+ 1
dx

= 1
2
k −

∫ k

0

1− 1

(e− 1)x+ 1
dx

= 1
2
k −

[
x− 1

e− 1
ln((e− 1)x+ 1)

]k
0

= 1
2
k −

((
k − 1

e− 1
ln((e− 1)k + 1)

)
− (0− ln 1)

)
= 1

2
k −

(
k − 1

2(e− 1)

)
=

1

2(e− 1)
− 1

2
k

=
1

2(e− 1)
− 1

2(
√

e + 1)

=
1

2(e− 1)
−
√

e− 1

2(e− 1)

=
2−
√

e

2(e− 1)

as we found using the substitution method.

We therefore have ∫ 1
2

0

f(x) dx+

∫ k

0

g(x) dx =
2
√

e− 3

2(e− 1)
+

2−
√

e

2(e− 1)

=

√
e− 1

2(e− 1)

=
1

2(
√

e + 1)

as we wanted.

Finally, to explain this result with the aid of a diagram, we want to fill in the two areas
indicated by the integrals on our sketch of the functions above. It would be useful to know
the value of f(1

2
) for this purpose: it is (e1/2 − 1)/(e − 1) = 1/(

√
e + 1) = k, which is very

convenient. Since g(x) is the inverse of f(x), it follows likewise that g(k) = 1
2
. We can now

sketch the areas on our graph.
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x

y
y = f(x)

y = g(x)

0 1
2

1
2

k

k

In this sketch, the dark shaded area is the integral
∫ 1/2

0
f(x) dx and the striped area is the

integral
∫ k

0
g(x) dx. We have reflected the dark shaded area in the line y = x to get the light

shaded area also shown. It is now clear that the shaded and striped areas add to give a 1
2
×k

rectangle, so the area is k/2 = 1/2(
√

e + 1), as we found.
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Question 7

The point P has coordinates (x, y) with respect to the origin O. By writing x = r cos θ and
y = r sin θ, or otherwise, show that, if the line OP is rotated by 60◦ clockwise about O,
the new y-coordinate of P is 1

2
(y −

√
3x). What is the new y-coordinate in the case of an

anti-clockwise rotation by 60◦?

The situation described is illustrated in the following diagram, where OP ′ is the image of OP
under the specified rotation, P ′ having coordinates (x′, y′).

r θ

P (x, y)

r

θ − 60◦

O

P ′(x′, y′)

Then we have

x = r cos θ

y = r sin θ

and

y′ = r sin(θ − 60◦)

We use the compound angle formula for sine to get

y′ = r(sin θ cos 60◦ − cos θ sin 60◦)

= 1
2
r sin θ −

√
3

2
r cos θ

= 1
2
y −

√
3

2
x

= 1
2
(y −

√
3x).

Likewise, if the rotation is by 60◦ anticlockwise, we replace the θ−60◦ by θ+ 60◦ and repeat
the above to get

y′ = 1
2
(y +

√
3x).

An equilateral triangle OBC has vertices at O, (1, 0) and (1
2
, 1

2

√
3), respectively. The

point P has coordinates (x, y). The perpendicular distance from P to the line through C
and O is h1; the perpendicular distance from P to the line through O and B is h2; and the
perpendicular distance from P to the line through B and C is h3.

Show that h1 = 1
2

∣∣y −√3x
∣∣ and find expressions for h2 and h3.
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0 1

√
3

2

O B

C
P (x, y)

h2

h1

h3

Clearly h2 = |y|. (We need to take the absolute value as P might lie under the x-axis.)

For h1, consider rotating the entire shape by 60◦ clockwise about O. This will rotate OC
to the x-axis, and the perpendicular from P to OC will become vertical. The transformed
y-coordinate of P is 1

2
(y −

√
3x), as we deduced earlier, so h1 = 1

2

∣∣y −√3x
∣∣.

Finally, for h3, we start by rotating anticlockwise by 60◦ around O. Then P ends up with
y-coordinate 1

2
(y +

√
3x) and the side BC ends up lying along the line y =

√
3

2
; subtracting

these then gives h3 = 1
2

∣∣y +
√

3x−
√

3
∣∣.

[An alternative argument is to translate the whole diagram by one unit to the left first, so
that B moves to the origin and P moves to (x − 1, y). Then rotating around the new B
gives P the new y-coordinate of 1

2
(y +

√
3(x− 1)), which is the same as before.]

Show that h1 + h2 + h3 = 1
2

√
3 if and only if P lies on or in the triangle OBC.

We have

h1 + h2 + h3 = 1
2

(∣∣2y∣∣+
∣∣y −√3x

∣∣+
∣∣y +

√
3x−

√
3
∣∣)

= 1
2

(∣∣2y∣∣+
∣∣√3x− y

∣∣+
∣∣√3−

√
3x− y

∣∣).
Using the triangle inequality, we then have

h1 + h2 + h3 = 1
2

(∣∣2y∣∣+
∣∣√3x− y

∣∣+
∣∣√3−

√
3x− y

∣∣)
> 1

2

∣∣(2y) + (
√

3x− y) + (
√

3−
√

3x− y)
∣∣

= 1
2

√
3,

with equality if and only if all of the bracketed terms are > 0 or all of the bracketed terms
are 6 0.

If all of the terms are negative or zero, then 2y 6 0, so y 6 0. And
√

3x − y 6 0 implies
that x 6 y/

√
3 6 0. But then we must have

√
3−
√

3x− y > 0, which is impossible. So we
cannot have all three terms negative or zero.

Therefore, if we have equality, we must have all three terms positive or zero. But 2y > 0
if and only if P lies on or above the x-axis, that is, on or above the line OB. Similarly,√

3x − y > 0 if and only if y 6
√

3x, which is true if and only if P lies on or below
the line OC (which has equation y =

√
3x). Finally,

√
3 −
√

3x − y > 0 if and only if
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y 6
√

3 −
√

3x, which is true if and only if P lies on or below the line BC (which has
equation y =

√
3−
√

3x).

Putting these together shows that h1 + h2 + h3 = 1
2

√
3 if and only if P lies on or inside the

triangle OBC.
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Question 8

(i) The gradient y′ of a curve at a point (x, y) satisfies

(y′)2 − xy′ + y = 0. (∗)

By differentiating (∗) with respect to x, show that either y′′ = 0 or 2y′ = x.

Hence show that the curve is either a straight line of the form y = mx + c, where
c = −m2, or the parabola 4y = x2.

Differentiating (∗) with respect to x, using the chain rule and product rule, gives

2y′y′′ − y′ − xy′′ + y′ = 0,

which, on cancelling terms and factorising, yields

(2y′ − x)y′′ = 0,

so either y′′ = 0 or 2y′ − x = 0.

We now solve these two differential equations. Firstly, by integrating y′′ = 0 twice with
respect to x, we get y′ = a, so y = ax + b (where a and b are constants). Substituting this
back into (∗) gives

a2 − x.a+ (ax+ b) = 0,

so
a2 + b = 0,

which gives us the straight line y = mx+ c with m = a and c = b = −a2 = −m2.

In the other case, y′ = 1
2
x, which on integrating gives y = 1

4
x2 + c. Substituting this back

into (∗) gives
(1

2
x)2 − x(1

2
x) + (1

4
x2 + c) = 0,

so c = 0 and y = 1
4
x2, or 4y = x2 as required.

(ii) The gradient y′ of a curve at a point (x, y) satisfies

(x2 − 1)(y′)2 − 2xyy′ + y2 − 1 = 0. (†)

Show that the curve is either a straight line, the form of which you should specify,
or a circle, the equation of which you should determine.

Differentiating (†) with respect to x, using the chain rule and product rule, gives:

2x(y′)2 + (x2 − 1).2y′y′′ − 2yy′ − 2xy′y′ − 2xyy′′ + 2yy′ = 0,

which, on cancelling terms, yields

2(x2 − 1)y′y′′ − 2xyy′′ = 0.

STEP I 2008 Mark Scheme September 4, 2008 Page 19

STEP I STEP Solutions June 2008

21

rushtn
Rectangle



Finally, factorising brings us to our desired conclusion:(
(x2 − 1)y′ − xy

)
y′′ = 0,

so either y′′ = 0 or y′(x2 − 1)− xy = 0.

We now solve these two equations. Again, integrating y′′ = 0 twice gives y′ = a, so y = ax+b.
Substituting this back into (†) gives:

(x2 − 1).a2 − 2x(ax+ b).a+ (ax+ b)2 − 1 = 0,

which is equivalent to

a2x2 − a2 − 2a2x2 − 2abx+ a2x2 + 2abx+ b2 − 1 = 0,

so
−a2 + b2 − 1 = 0,

or b2 = a2 +1. Thus the equation is satisfied by straight lines y = mx+ c where c2 = m2 +1.

In the other case, y′(x2 − 1)− xy = 0.

It looks as though we could solve this by separating the variables to give:∫
1

y
dy =

∫
x

x2 − 1
dx,

so ln y = 1
2

ln |x2 − 1|+ c. Doubling and exponentiating then gives

y2 = C|x2 − 1|.
To determine C and if its value depends upon whether |x| < 1 or |x| > 1, we ought to try
substituting back into (†). However, it is simpler to substitute in the result y′(x2 − 1) = xy
directly into (†).

Substituting y′ = xy/(x2 − 1) back into (†) gives

(x2 − 1)

(
xy

x2 − 1

)2

− 2xy

(
xy

x2 − 1

)
+ y2 − 1 = 0.

Expanding brackets then gives

x2y2

x2 − 1
− 2x2y2

x2 − 1
+ y2 − 1 = 0

so

− x2y2

x2 − 1
+ y2 − 1 = 0.

Multiplying by x2 − 1 gives

−x2y2 + (y2 − 1)(x2 − 1) = 0

so

−x2y2 + y2x2 − y2 − x2 + 1 = 0

or

−x2 − y2 + 1 = 0,

and we therefore deduce that the only other possible solution is the circle x2 + y2 = 1.

We must finally check that the circle does, in fact, satisfy y′ = xy/(x2 − 1). Differentiating
x2 + y2 = 1 with respect to x gives 2x+ 2yy′ = 0, so y′ = −x/y = −xy/y2 = −xy/(1− x2),
as required.
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Question 9

Two identical particles P and Q, each of mass m, are attached to the ends of a diameter
of a light thin circular hoop of radius a. The hoop rolls without slipping along a straight
line on a horizontal table with the plane of the hoop vertical. Initially, P is in contact with
the table. At time t, the hoop has rotated through an angle θ. Write down the position at
time t of P , relative to its starting point, in cartesian coordinates, and determine its speed
in terms of a, θ and θ̇. Show that the total kinetic energy of the two particles is 2ma2θ̇2.

x

y

P

Q

O

time 0

Oa

θ
P

Q

time t

The diagram shows the hoop rolling to the right, indicating the positions of the hoop at
time 0 and time t.

Taking the origin to be at the initial position of P , the coordinates of the centre of the hoop
at time t are (aθ, a), since the hoop has rolled a distance aθ. Therefore P has coordinates
(a(θ − sin θ), a(1− cos θ)) and position vector

rP = a(θ − sin θ)i + a(1− cos θ)j.

The velocity vector of P is then

ṙP =
d

dt

(
a(θ − sin θ)

)
i +

d

dt

(
a(1− cos θ)

)
j

= a

(
dθ

dt
− d

dθ
(sin θ)

dθ

dt

)
i− a d

dθ
(cos θ)

dθ

dt
j

= a(θ̇ − cos θ.θ̇)i + a sin θ.θ̇ j

= aθ̇
(
(1− cos θ)i + sin θ j

)
,

and hence P has speed vP given by

v2
P = (aθ̇)2

(
(1− cos θ)2 + (sin θ)2

)
= (aθ̇)2(1− 2 cos θ + cos2 θ + sin2 θ)

= (aθ̇)2(2− 2 cos θ)

= (aθ̇)2.4 sin2 1
2
θ

= (2aθ̇ sin 1
2
θ)2,
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so that vP = 2a|θ̇ sin 1
2
θ|.

Similarly, the coordinates of Q are (a(θ + sin θ), a(1 + cos θ)), so Q has position vector

rQ = a(θ + sin θ)i + a(1 + cos θ)j.

Arguing as before, the velocity vector of Q is then

ṙQ = a(θ̇ + cos θ.θ̇)i− a sin θ.θ̇ j

= aθ̇
(
(1 + cos θ)i− sin θ j

)
so that Q has speed vQ given by

v2
Q = (aθ̇)2

(
(1 + cos θ)2 + (sin θ)2

)
= (aθ̇)2(1 + 2 cos θ + cos2 θ + sin2 θ)

= (aθ̇)2(2 + 2 cos θ)

= (aθ̇)2.4 cos2 1
2
θ.

Adding v2
P = (aθ̇)2.4 sin2 1

2
θ to this gives the total kinetic energy as

1
2
mv2

P + 1
2
mv2

Q = 1
2
m(v2

P + v2
Q)

= 1
2
m
(
(aθ̇)2.4 sin2 1

2
θ + (aθ̇)2.4 cos2 1

2
θ
)

= 1
2
m(aθ̇)2.4

= 2ma2θ̇2

as required.

Given that the only external forces on the system are gravity and the vertical reaction of
the table on the hoop, show that the hoop rolls with constant speed.

Consider the hoop as a single system. The only external forces on the hoop are gravity and
the normal reaction. Both of these are vertical, while the hoop only moves in a horizontal
direction. Therefore, no work is done on the hoop, so that GPE + KE is constant.

The gravitational potential energy of P and Q together, taking the centre of the hoop as
potential energy zero, gives mga(− cos θ) + mga(+ cos θ) = 0. So the GPE of the system is
constant, meaning that the kinetic energy is also constant.

Since the total kinetic energy is 2ma2θ̇2, it follows that θ̇ is constant, that is, the hoop rolls
with the constant speed aθ̇.
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Question 10

On the (flat) planet Zog, the acceleration due to gravity is g up to height h above the surface
and g′ at greater heights. A particle is projected from the surface at speed V and at an
angle α to the surface, where V 2 sin2 α > 2gh. Sketch, on the same axes, the trajectories
in the cases g′ = g and g′ < g.

We know that the path of a projectile is parabolic when the gravity is constant. When
the gravity is less, the parabola will be “bigger”, as the projectile will travel higher before
returning to the ground, but the horizontal component of velocity will be unaffected.

So our sketch will consist of a parabola for the case g = g′ and a pair of parabolas joined at
height h in the case g′ < g. Note that the velocity does not change suddenly at height h, so
the curve will be “smooth” at this point. (Technically, it has a continuous first derivative.)

We need to check that the particle does reach height h before we draw a sketch. The vertical
component of velocity is initially V sinα. If the gravity were a constant g, then the maximum
height reached would be s, where the formula v2 = u2 + 2as gives us 02 = V 2 sin2 α − 2gs,
so s = V 2 sin2 α/2g > h, so the particle does reach height greater than h.

So here, then, is the sketch:

g′ < gg′ = g

h

Show that the particle lands a distance d from the point of projection given by

d =

(
V − V ′

g
+
V ′

g′

)
V sin 2α,

where V ′ =
√
V 2 − 2gh cosec2 α.

We note that the horizontal speed is a constant V cosα, as there is no horizontal component of
acceleration. Therefore the distance travelled is this times the time travelled. By symmetry,
we find the time taken to reach the highest point on the trajectory, and then double it to
find the total time.

First part: below height h.

We use the “suvat” equations to determine the time taken and the vertical speed at height h.
Taking upwards as positive, we have s = h, u = V sinα, a = −g. Then v2 = u2 + 2as gives
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v2 = V 2 sin2 α− 2gh and v = u+ at gives

t =
V sinα−

√
V 2 sin2 α− 2gh

g

=

(
V −

√
V 2 − 2gh cosec2 α

g

)
sinα

=

(
V − V ′

g

)
sinα,

writing V ′ =
√
V 2 − 2gh cosec2 α.

Second part: above height h.

This time, u =
√
V 2 sin2 α− 2gh = V ′ sinα, v = 0 and a = −g′, so v = u+ at gives

t =
V ′ sinα

g′
.

Therefore, the total time taken to reach the highest point is(
V − V ′

g

)
sinα +

V ′ sinα

g′
=

(
V − V ′

g
+
V ′

g′

)
sinα.

Finally, we need to multiply this by 2 to get the total time taken and then by V cosα to get
the distance travelled, giving the distance

d = 2

(
V − V ′

g
+
V ′

g′

)
sinα.V cosα

=

(
V − V ′

g
+
V ′

g′

)
V sin 2α,

using 2 sinα cosα = sin 2α.
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Question 11

A straight uniform rod has mass m. Its ends P1 and P2 are attached to small light rings
that are constrained to move on a rough circular wire with centre O fixed in a vertical
plane, and the angle P1OP2 is a right angle. The rod rests with P1 lower than P2, and with
both ends lower than O. The coefficient of friction between each of the rings and the wire
is µ. Given that the rod is in limiting equilibrium (i.e., on the point of slipping at both
ends), show that

tanα =
1− 2µ− µ2

1 + 2µ− µ2
,

where α is the angle between P1O and the vertical (0 < α < 45◦).
Let θ be the acute angle between the rod and the horizontal. Show that θ = 2λ, where λ is
defined by tanλ = µ and 0 < λ < 22.5◦.

We present two methods for solving the problem. The first is a standard method using
resolution of forces; the second is to use standard results about three forces acting on a large
body. We specify that the length of the rod is 2`, so that the radius of the circle is `

√
2.

Method 1: Resolving all the forces

We begin by drawing a clear sketch of the situation.

O

P1

P2

M

N1

F1

N2
F2

mg

α

θ

45◦
θ

α

α

θ
`

`
√

2
`
√

2

`

Note that as the rod is in limiting equilibrium, both of the frictional forces act to prevent it
from slipping towards the horizontal, and F1 = µN1, F2 = µN2. Also, we see that θ = 45◦−α,
as the angle OP1P2 is 45◦ (the triangle being isosceles), so 0 < θ < 45◦.

We now resolve the forces in two directions. We could resolve in any two directions, but so
that we can exclude mg from at least one of the equations, we choose to resolve horizontally
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and vertically. Another sensible choice would have been to resolve along the directions of
OP1 and OP2.

R(↑) N1 cosα− µN1 sinα +N2 sinα + µN2 cosα−mg = 0 (1)

R(→) N1 sinα + µN1 cosα−N2 cosα + µN2 sinα = 0 (2)

We also need to take moments. There are four obvious places about which we can take
moments: O, P1, P2 and M . For completeness, we show what happens if we calculate
moments about all four points; clearly only one of these is necessary.

M (
y
O) mg.` sin(45◦ − α)− F1.`

√
2− F2.`

√
2 = 0 (3)

M (
y
P1) mg.` cos(45◦ − α)−N2.`

√
2− F2.`

√
2 = 0 (4)

M (
y
P2) N1.`

√
2− F1.`

√
2−mg.` cos(45◦ − α) = 0 (5)

M (
y
M) N1.`/

√
2− F1.`/

√
2−N2.`/

√
2− F2.`/

√
2 = 0 (6)

Our task is now to eliminate everything to find an expression for tanα in terms of µ. We
can use any one of the equations (3)–(6) to do this, but (6) appears to be the easiest to
work with. (With the others, we would have to use a compound angle formula such as
sin(45◦ − α) = sin 45◦ cosα− cos 45◦ sinα = 1√

2
(cosα− sinα).)

Recalling that F1 = µN1 and F2 = µN2, equation (6) then gives us

N1 − µN1 = N2 + µN2

so

N1(1− µ) = N2(1 + µ), (7)

or equivalently
N1

N2

=
1 + µ

1− µ
. (8)

(9)

We can also solve equations (1) and (2) simultaneously to get the results

N1 =
mg(cosα− µ sinα)

1 + µ2

and

N2 =
mg(sinα + µ cosα)

1 + µ2
,

so
N1

N2

=
cosα− µ sinα

sinα + µ cosα
.

Equating this expression with equation (8) yields

cosα− µ sinα

sinα + µ cosα
=

1 + µ

1− µ
.
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Dividing the numerator and denominator of the left hand side by cosα then gives

1− µ tanα

tanα + µ
=

1 + µ

1− µ
.

A simple rearrangement of this then yields our desired result:

tanα =
1− 2µ− µ2

1 + 2µ− µ2
.

(Alternatively, one could use (7) to substitute for N2 in equation (2), after writing F1 = µN1

and F2 = µN2. Factorising then gives

N1(1 + µ)(sinα + µ cosα)−N1(1− µ)(cosα− µ sinα) = 0.

On dividing by N1 cosα and expanding the brackets, we end up with an expression in tanα
which we can again rearrange to reach our desired conclusion.)

Now if tanλ = µ with 0 < λ < 22.5◦, we have (recalling that θ = 45◦ − α)

tan θ = tan(45◦ − α)

=
tan 45◦ − tanα

1 + tan 45◦ tanα

=
1− tanα

1 + tanα
as tan 45◦ = 1

=
1− 1−2µ−µ2

1+2µ−µ2

1 + 1−2µ−µ2

1+2µ−µ2

=
(1 + 2µ− µ2)− (1− 2µ− µ2)

(1 + 2µ− µ2) + (1− 2µ− µ2)

=
4µ

2− 2µ2

=
2µ

1− µ2

=
2 tanλ

1− tan2 λ

= tan 2λ.

Then since 0 < θ < 45◦, it follows that θ = 2λ as required.

Method 2: Three forces on a large body theorem

We recall the theorem that if three forces act on a large body in equilibrium, and they are not
all parallel, then they are concurrent (i.e., they all pass through a single point). We combine
the normal reaction, N , and friction, F , at each end of the rod into a single reaction force, R.
This acts at an angle φ to the normal, where tanφ = F/N . In our case, F = µN as the rod
is on the point of slipping, so tanφ = µ. But the question defines λ to be the acute angle
such that tanλ = µ, from which it follows that φ = µ.

We now redraw the diagram showing only the total reaction forces, which we call R1 and R2

in this context, and we ensure that R1, R2 and the weight mg pass through a single point X.
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O

P1

P2

M

R1

R2

mg

X

α

θ

θ

45◦ − λ

λ
45◦

λ

``

The rest of the question is now pure trigonometry. We apply the sine rule to the triangles
P1MX and P2MX, first noting that

∠MXP1 = 180◦ − (45◦ − λ)− (90◦ + λ) = 45◦ − θ + λ

and
∠MXP2 = 180◦ − (90◦ − θ)− (45◦ + λ) = 45◦ + θ − λ

to get

`

sin(45◦ − θ + λ)
=

MX

sin(45◦ − λ)
(10)

`

sin(45◦ + θ − λ)
=

MX

sin(45◦ + λ)
. (11)

Then using the identity sin(90◦− x) = cos x twice, once with x = 45◦− θ+ λ and then with
x = 45◦ + λ, we deduce from equation (11) that

`

cos(45◦ − θ + λ)
=

MX

cos(45◦ − λ)
. (12)

We can now divide equation (12) by (10) to get

tan(45◦ − θ + λ) = tan(45◦ − λ). (13)

It follows immediately that 45◦− θ+λ = 45◦−λ as both angles are acute, so θ = 2λ, which
answers the second part of the question.

This result then leads us to conclude that

tan θ = tan 2λ =
2 tanλ

1− tan2 λ
=

2µ

1− µ2
.
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Finally, as we know that α = 45◦ − θ, we can deduce that

tanα = tan(45◦ − θ)

=
tan 45◦ − tan θ

1 + tan 45◦ tan θ

=
1− tan θ

1 + tan θ
as tan 45◦ = 1

=
1− 2µ

1−µ2

1 + 2µ
1−µ2

=
(1− µ2)− 2µ

(1− µ2) + 2µ

=
1− 2µ− µ2

1 + 2µ− µ2
,

and we are done.
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Question 12

In this question, you may use without proof the results:

n∑
r=1

r = 1
2
n(n+ 1) and

n∑
r=1

r2 = 1
6
n(n+ 1)(2n+ 1).

The independent random variables X1 and X2 each take values 1, 2, . . . , N , each value
being equally likely. The random variable X is defined by

X =

{
X1 if X1 > X2

X2 if X2 > X1.

(i) Show that P(X = r) =
2r − 1

N2
for r = 1, 2, . . . , N .

We have X = r when either X1 = r and X2 < r, or X2 = r and X1 < r or X1 = X2 = r.
Therefore

P(X = r) = P(X1 = r ∩X2 < r) + P(X2 = r ∩X1 < r) + P(X1 = X2 = r)

=
1

N
.
r − 1

N
+

1

N
.
r − 1

N
+

1

N
.

1

N

=
2r − 1

N2
.

Alternatively, one can argue as follows:

P(X = r) = P(X1 = r ∩X2 6 r) + P(X2 = r ∩X1 6 r)− P(X1 = X2 = r)

=
1

N
.
r

N
+

1

N
.
r

N
− 1

N
.

1

N

=
2r − 1

N2
.

(ii) Find an expression for the expectation, µ, of X and show that µ = 67.165 in the case
N = 100.
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By the definition of expectation, we have

µ = E(X) =
N∑
r=1

r.P(X = r)

=
N∑
r=1

r(2r − 1)

N2

=
1

N2

N∑
r=1

(2r2 − r)

=
1

N2

(
2
6
N(N + 1)(2N + 1)− 1

2
N(N + 1)

)
using the given results

=
1
6
N(N + 1)(4N + 2− 3)

N2

=
(N + 1)(4N − 1)

6N
.

In the case N = 100, this is 101× 399/600 = 13 433/200 = 67.165 as required.

(iii) The median, m, of X is defined to be the integer such that P(X > m) > 1
2

and
P(X 6 m) > 1

2
. Find an expression for m in terms of N and give an explicit value

for m in the case N = 100.

We have

P(X 6 k) =
k∑
r=1

2r − 1

N2

=
1

N2

(
2.1

2
k(k + 1)− k

)
=

k2

N2

so that

P(X > k) = 1− P(X 6 k − 1) = 1− (k − 1)2

N2
.

We are looking for the value of m which makes P(X > m) > 1
2

and P(X 6 m) > 1
2
. The

first condition gives

1− (m− 1)2

N2
> 1

2

⇐⇒ (m− 1)2

N2
6 1

2

⇐⇒ (m− 1)2 6 1
2
N2

⇐⇒ m− 1 6 N√
2

⇐⇒ m 6 N√
2

+ 1.
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The second condition, P(X 6 m) > 1
2
, yields

m2

N2
> 1

2

⇐⇒ m2 > 1
2
N2

⇐⇒ m > N√
2
.

So we have N/
√

2 6 m 6 (N/
√

2) + 1, thus m is the smallest integer greater than N/
√

2
(which is not itself an integer as

√
2 is irrational). The smallest integer greater than or equal

to a number x is called the ceiling of x, and is denoted by dxe, so we can state our result as
m = dN/

√
2e.

In the case N = 100, m = d100/
√

2e = d70.7 . . . e = 71.

(iv) Show that when N is very large,

µ

m
≈ 2
√

2

3
.

We have formulæ for µ from part (ii) and for m from part (iii). Therefore we have, for
large N ,

µ

m
=

(N + 1)(4N − 1)

6N

/
dN/
√

2e

≈ (N + 1)(4N − 1)

6N(N/
√

2)

=
4N2 + 3N − 1

6N2/
√

2

=
4 + 3

N
− 1

N2

6/
√

2

≈ 4

6/
√

2

=
2
√

2

3
.
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Question 13

Three married couples sit down at a round table at which there are six chairs. All of the
possible seating arrangements of the six people are equally likely.

(i) Show that the probability that each husband sits next to his wife is 2
15

.

We call the couples H1 and W1, H2 and W2, H3 and W3. We seat H1 arbitrarily, leaving
5! = 120 ways of seating the remaining five people. If each husband sits next to his wife,
then there are two seats in which W1 can sit, each of which leaves four consecutive seats for
the other two couples.

There are four choices for who to sit immediately next to W1, and that forces the following
seat as well (being the spouse of that person).

Next, there are two choices for who to seat the other side of H1, and the final person must
sit next to their spouse.

So there are 2× 4× 2 = 16 ways to have all of the husbands sitting next to their wives, with
a probability of 16

120
= 2

15
.

(ii) Find the probability that exactly two husbands sit next to their wives.

Assume to begin with that H1 and W1 are separated and the other two husbands are seated
next to their wives. Once H1 has been seated, there are five possible positions for W1, as
shown in the following diagrams (there are two possibilities shown in each of the first two):

W1

H1

W1

H1

W1W1

H1

W1

Clearly the first two possibilities do not work: in the first, H1 and W1 are next to each other.
In the second, whoever sits between H1 and W1 will be separated from their spouse. So
W1 must sit opposite H1, one couple sits to the right of H1 and the other couple to his left.
There are two choices for which couple sits to the right of H1, and two choices for whether
the husband or wife sits next to H1; similarly there are two choices for whether the husband
or wife of the third couple sits next to H1. So in all, there are 2× 2× 2 = 8 ways to seat the
couples with H1 and W1 separated and the other couples together.

Similarly, there are 8 ways with couple 2 separated and 8 ways with couple 3 separated, so
there are 3× 8 = 24 ways in total.

Thus the probability is 24
120

= 3
15

= 1
5
.
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(iii) Find the probability that no husband sits next to his wife.

Method 1: First find the probability of exactly one husband sitting next to his wife.

Let us assume that H3 and W3 are the only pair next to each other. Then in the above
diagrams, the left hand one fails as H1 and W1 are together. The right hand one also fails,
as if H3 and W3 are together, H2 and W2 must also be. So the only valid configuration is the
middle one, with either H2 or W2 between H1 and W1 and the other partner on the other
side of either H1 or W1.

There are two choices for where W1 will sit, two choices for which of H2 or W2 will sit
between H1 and W1, two choices for where the other partner will sit, and two choices for
which way round H3 and W3 will sit, giving 2× 2× 2× 2 = 16 possibilities.

Finally, we need to multiply this by three, as any one of the three couples could be the
adjacent one, giving 3× 16 = 48 possibilities, and hence a probability of 48

120
= 2

5
= 6

15
.

Thus the probability that no husband sits next to his wife is 1− 2
15
− 3

15
− 6

15
= 4

15
.

Method 2: Find the probability directly.

If no husband sits next to his wife, there are two possible configurations as shown in these
diagrams (the arrows join husbands with their wives):

The number of ways of arranging the first case (fixing H1 at the top as usual) is 2×2×2 = 8,
as their are two ways of choosing which couple sits in which of the diagonal pairs of seats,
two ways of couple 2 sitting and two ways of couple 3 sitting.

For the second case, which is no longer totally symmetrical between the three couples, if H1

sits in the top seat, there are again 8 ways of seating the other two couples. As there are
three choices for which couple sits opposite each other, there are 3× 8 = 24 ways in all.

Thus in total there are 8 + 24 = 32 ways, giving a total probability of 32
120

= 4
15

.
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STEP Mathematics II 2008: Solutions 
 
 
1        (i)  Given (xn+1 , yn + 1) = (xn

2 – yn
2 + 1,  2xn yn + 1), it is easier to remove the subscripts and  

 
      set  x2 – y2 + 1 = x  and  2xy + 1 = y. Then, identifying the y’s (or x’s) in each case, gives   

      y2 = x2 – x + 1   and   y = 
x21

1
−

. Eliminating the y’s leads to a polynomial equation in x;  

     namely,  4x4 – 8x3 + 9x2 – 5x = 0. 
 
      Noting the obvious factor of x, and then finding a second linear factor (e.g. by the factor  
      theorem) leads to  x(x – 1)(4x2 – 4x + 5) = 0. Here, the quadratic factor has no real roots, 
      since the discriminant, Δ = 42 – 4.4.5 = – 64 < 0. [Alternatively, one could note that    
      4x2 – 4x + 5 ≡ (2x – 1)2 + 4 > 0 ∀x. ] 
 
      The two values of x, and the corresponding values of y, gained by substituting these  x’s   

      into   y = 
x21

1
−

, are then  (x , y) = (0 , 1)  and  (1 , – 1) 

   
(ii) Now  (x1 , y1) = (– 1 , 1)  ⇒  (x2 , y2) = (a , b)  and  (x3 , y3) = (a2 – b2 + a , 2ab + b + 2). 
        Setting both  a2 – b2 + a = – 1  and  2ab + b + 2 = 1, so that the third term is equal to the  

      first, and identifying the b’s in each case, gives   b2 = a2 + a + 1   and   b = 
a21

1
+
−

.  

 
      One could go about this the long way, as before. However, it can be noted that the  
      algebra is the same as in (i), but with  a = – x  and  b = – y. Either way, we obtain the  
      two possible solution-pairs: (a , b) = (0 , – 1)  and  (– 1 , 1). 
 
      However, upon checking, the solution (– 1 , 1) actually gives rise to a constant sequence  
      (and remember that the working only required the third term to be the same as the first,  
      which doesn’t preclude the possibility that it is also the same as the second term!),  
      so we find that there is in fact just the one solution:  (a , b) = (0 , – 1).  
 
 
 

2 The correct partial fraction form for the given algebraic fraction is   

( ) 2222 1)1(11)1(
1

x
DCx

x
B

x
A

xx
x

+
+

+
−

+
−

≡
+−

+
, 

 although these can also be put together in other correct ways that don’t materially hinder  
 the progress of the solution. The standard procedure now is to multiply throughout by the  
 denominator of the LHS and compare coefficients or substitute in suitable values: which  
 leads to  A = 2

1  , B = 1 , C = 2
1  and  D = – 2

1 . 
 
 In order to apply the binomial theorem to these separate fractions, we now use index  
    notation to turn 

( ) ( ) ( ) 121221
22 11)1()1(

1)1(
1 −−−− ++++−+−≡

+−
+ xDxCxxBxA

xx
x

 

into the infinite series 

2
1 ∑

∞

=0n

nx  +  ∑
∞

=

+
0

)1(
n

nxn  + 2
1 ∑

∞

=

+−
0

12)1(
n

nn x   –  2
1 ∑

∞

=

−
0

2)1(
n

nn x . 

 
 It should be clear at this point that the last two of these series have odd/even powers only, 
 with alternating signs playing an extra part. The consequence of all this is that we need to  
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 examine cases for n modulo 4; i.e. depending upon whether n leaves a remainder of 0, 1, 2 
 or 3 when divided by 4. 
 
 For  n ≡ 0 (mod 4), the coefft. of xn is  2

1  + n + 1 + 0 – 2
1  = n + 1; 

 
 A1 for  n ≡ 1 (mod 4), coefft. of xn is  2

1  + n + 1 + 2
1  – 0 = n + 2; 

 
 A1 for  n ≡ 2 (mod 4), coefft. of xn is  2

1  + n + 1 + 0 + 2
1  = n + 2; 

 
 A1 for  n ≡ 3 (mod 4), coefft. of xn is  2

1  + n + 1 – 2
1  + 0 = n + 1.   

 

For the very final part of the question, we note that  
01.19.0

1.1
8181

11000
2 ×

= , is a cancelled form of 

our original expression, with x = 0.1 . (N.B. |x| < 1 assures the convergence of the infinite series 
forms). Substituting this value of x into 
 

1 + 3x + 4x2 + 4x3 + 5x4 + 7x5 + 8x6 + 8x7 + 9x8 + … 
 
then gives  1.344 578 90  to 8dp. 
 
 
 

3 (i)  Setting 
x
y

d
d  = 81x2 – 54x = 0  for TPs gives  (0 , 4)  and  ( )0,3

2   . You really ought to    

        know the shape of such a (“positive”) cubic, and it is customary to find the crossing- 
       points on the axes:  x = 0  gives  y = 4,  and  y = 0  leads to  x = – 1  and  x = 3

2 (twice). 
        [If you have been paying attention, this latter zero for y should come as no surprise!] 
       The graph now shows that,  for all  x ≥ 0,  y ≥ 0; which leads to the required result –  
        x2(1 – x) ≤ 27

4  – with just a little bit of re-arrangement. 
      
      In order to prove the result by contradiction (reduction ad absurdum), we first assume 
     that all three numbers exceed 27

4 . Then their product 
bc(1 – a)ca(1 – b)ab(1 – c) > ( 27

4 )3. 
      However, this product can be re-written in the form   

a2(1 – a). b2(1 – b.) c2(1 – c), 
       and the previous result guarantees that  x2(1 – x) ≤ 27

4  for each of a , b , c, from which  
      it follows that 

a2(1 – a). b2(1 – b.) c2(1 – c) ≤ ( 27
4 )3, 

      which is the required contradiction. Hence, at least one of the three numbers  bc(1 – a),  
      ca(1 – b), ab(1 – c) is less than, or equal to, 27

4 . 
 
(ii) Drawing the graph of  y = x – x2  (there are, of course, other suitable choices, such as  
      y = (2x – 1)2 for example) and showing that it has a maximum at  ( 2

1 , 4
1 ) gives   

x(1 – x) ≤ 4
1  for all x. 

      The assumption that  p(1 – q) , q(1 – p) > 4
1  ⇒  p(1 – p).q(1 – q) > ( 4

1 )2. 
      However, we know that  x(1 – x) ≤ 4

1  for each of p and q, and this gives us that 
p(1 – p).q(1 – q) ≤ ( 4

1 )2. 
       Hence, by contradiction, at least one of  p(1 – q) , q(1 – p) ≤ 4

1 .  
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4 Differentiating implicitly gives  0
d
d

d
d2 =⎟

⎠
⎞

⎜
⎝
⎛ +++ ay

x
yax

x
yyx , from which it follows that 

 

 
yax

ayx
x
y

+
+

−=  
d
d

 and hence the gradient of the normal is  
ayx

yax
+
+

. 

 Using  tan(A – B)  on this and  
x
y

 gives   tan θ  = 

ayx
yax

x
y

ayx
yax

x
y

+
+

×+

+
+

−

1
 = 22

22

yaxyaxyx
xyaxayxy

+++
−−+

. 

 
 However, we know that  x2 + y2 + 2axy = 1  from the curve’s eqn., and so   

tan θ  = 22 xya − . 

 

 (i)   Differentiating this w.r.t.  x  then gives  sec2θ 
xd

dθ
 = ⎟

⎠
⎞

⎜
⎝
⎛ − x

x
yya 2

d
d2 . Equating this to 

        zero and using 
yax

ayx
x
y

+
+

−=  
d
d

 from earlier then leads to   a(x2 + y2) + 2xy = 0 . 

 
 (ii)  Adding   x2 + y2 + 2axy = 1   and   a(x2 + y2) + 2xy = 0  gives  (1 + a)(x + y)2 = 1 . 
 
 (iii) However, subtracting these two eqns. instead gives  (1 – a)(y – x)2 = 1 , and  
        multiplying these two last results together yields  (1 – a2) (y2 – x2)2 = 1. 
 

        Finally, using  tan θ  = 22 xya −   ⇒  (y2 – x2)2 = 2

1
a

 tan2θ  , and substituting this 

        into the last result of (iii) then gives the required result:  tan θ  = 
21 a

a
−

. All that 

        remains is to justify taking the positive square root,  since tan θ  is | something |, which         
is necessarily non-negative. 
 
 
 

5 Using a well-known double-angle formula gives ∫ +

2/π

0
2sin1

2sin
x

x
dx = ∫ +

2/

0
2sin1

cossin2π

x
xx

 dx , and 

 this should suggest an obvious substitution: letting   s = sin x  turns this into the integral 

∫ +

1

0
21

2
s
s

 ds . 

 This is just a standard log. integral (the numerator being the derivative of the denominator), 
 leading to the answer  ln 2 .  
 
 Alternatively, one could use the identity  sin2x ≡ x2cos2

1
2
1 −  to end up with   

∫ −

2/π

0 2cos3
2sin2

x
x

dx. 

 This, again, gives a log. integral, but without the substitution. 
 

 A suitable substitution for the second integral is  c = cos x , which leads to  ∫ −

1

0
22

1
c

 dc .  
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 Now you can either attack this using partial fractions, or you could look up what is a fairly
 standard result in your formula booklet. In each case, you get (after a bit of careful log and  

 surd work)   ( )21ln
2

1
+  . 

 
 Now  (1 + 2 )5 = 1 + 5 2  + 20 + 20 2  + 20 + 4 2  = 41 + 29 2  (using the binomial 
 theorem, for instance), and  

41 + 29 2  < 99  ⇔  29 2  < 58  ⇔  2  < 2 , 
 which is obviously the case. Also, 1.96 < 2  ⇒  1.4 < 2 . Thereafter, an argument such as 

21.4 > 1 + 2   ⇔  27 > (1 + 2 )5  ⇔  128 > 41 + 29 2    
             ⇔      87 > 29 2      ⇔   3  > 2       

 from which it follows that 2122 5
72 +>> . 

 

 Taking logs in this result then gives 2  ln 2 > ln(1 + 2 )  ⇒  ( )21ln
2

12ln +> ; and  

∫ +

2/π

0
2sin1

2sin
x

x
dx > ∫ +

2/

0
2sin1

sinπ

x
x

dx . 

 
 
 
6 (i)   Firstly,  cos x  has period 2π  ⇒  cos (2x)  has period π;  

       and  sin x  has period 2π  ⇒  sin ⎟
⎠
⎞

⎜
⎝
⎛

2
3x

 has period 3
4 π. 

       Then  f(x) = cos ⎟
⎠
⎞

⎜
⎝
⎛ +

3
π2x  + sin ⎟

⎠
⎞

⎜
⎝
⎛ −

4
π

2
3x

  has period  4π = lcm(π , 3
4 π). 

 
 (ii)  Any approach here is going to require the use of some trig. identity work. The most  

       straightforward is to note that  cos θθ sin
2

−=⎟
⎠
⎞

⎜
⎝
⎛ +
π

   so that  f(x) = 0 reduces to 

       cos ⎟
⎠
⎞

⎜
⎝
⎛ +

3
π2x  = cos ⎟

⎠
⎞

⎜
⎝
⎛ +

42
3 πx

, from which it follows that   ⎟
⎠
⎞

⎜
⎝
⎛ +±=+

42
32

3
2 πxnπx π  

      where n is an integer, using the symmetric and periodic properties of the cosine curve. 
      Taking suitable values of n, so that x is in the required interval, leads to the answers 

        x = – 
42

31π
 (from n = – 1, with the – sign),  x = – 

6
π

 (n = 0, with both + and – signs),   

       x = 
42

17π
 (n = 1, – sign)  and  x = 

42
41π

 (n = 2, – sign). 

       Since  x = – 
6
π

 is a repeated root (occurring twice in the above list), the curve of 

       y = f(x)  touches the x-axis at this point. 
 
       For those who are aware of the results that appear in all the formula books, but which  
       seem to be on the edge of the various syllabuses, that I know by the title of the Sum- 

       and-Product Formulae, such as  cos A + cos B ≡ ⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ +

2
cos

2
cos2 BABA

, there is a  

       second straightforward approach available here. For example, noting that 

      cos θθ sin
2

=⎟
⎠
⎞

⎜
⎝
⎛ −
π

  gives  cos ⎟
⎠
⎞

⎜
⎝
⎛ +

3
π2x  + cos ⎟

⎠
⎞

⎜
⎝
⎛ −

2
3

4
3 xπ

 = 0  which (from the above  
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      identity) then gives  2 cos ⎟
⎠
⎞

⎜
⎝
⎛ +

24
13

4
πx

cos ⎟
⎠
⎞

⎜
⎝
⎛ −

24
5

4
7 πx

 = 0, and setting each of these two        

cosine terms equal to zero, in turn, yields the same values of x as before, including the       repeat. 
 

 (iii) The key observation here is that  y = 2  if and only if both  cos ⎟
⎠
⎞

⎜
⎝
⎛ +

3
π2x  = 1   and    

        sin ⎟
⎠
⎞

⎜
⎝
⎛ −

4
π

2
3x

 = 1, simultaneously. So we must solve  

        cos ⎟
⎠
⎞

⎜
⎝
⎛ +

3
π2x  = 1  ⇒  

3
2 πx +  = 0 , 2π , 4π , … , giving  

6
5πx =  , 

6
11π

 , … ;  and 

        sin ⎟
⎠
⎞

⎜
⎝
⎛ −

4
π

2
3x

 = 1  ⇒  =−
42

3 πx
 

2
π

 , 
2

5π
 , … , giving 

2
πx =  , 

6
11π

 , … . 

        Both equations are satisfied when  x = 
6

11π
 , and this is the required answer.   

 
 
 

7 (i)   Differentiating  y = u 21 x+   gives  
x
y

d
d

 = u. .1
1

2

2
x

x
x

++
+ x

u
d
d

; so that 

  

        21d
d 1

x
xxy

x
y

y +
+=  becomes  

⎭
⎬
⎫

⎩
⎨
⎧

++
++ x

ux
x

ux
xu d

d.1
11

1 2

22
 = 2

2

1
1

x
xxxu
+

++ . 

        Simplifying and cancelling the common term on both sides leads to 

.1
u x

u
d
d

 = 21 xxu + . 

 
        This is a standard form for a first-order differential equation, involving the separation  
        of variables and integration:  

.1
2∫ u

du = ∫ + 21 xx dx  ⇒  ( ) 2
321

3
11 x

u
+=−  (+ C). 

        Using  x = 0 , y = 1 (u = 1)  to find C leads to the final answer,  y = 
( ) 2

32

2

14
13

x
x

+−

+
. 

 
 (ii)  The key here is to choose the appropriate function of x. If you have really got a feel for  
        what has happened in the previous bit of the question, then this isn’t too demanding. If  
        you haven’t really grasped fully what’s going on then you may well need to try one or  

        two possibilities first. The product that needs to be identified here is  y = u ( ) 3
131 x+ .  

       Once you have found this, the process of (i) pretty much repeats itself.  
 

      
x
y

d
d

 = u. ( ) ( ) 3
1

3
2 332 11 xxx +++

−

x
u

d
d

 means that  3

2
2

1d
d 1

x
xyx

x
y

y +
+=   becomes   

.1
u x

u
d
d

 = ( ) 3
132 1 xux + . 

 
        Separating variables and integrating:  

.1
2∫ u

du = ( )∫ + 3
132 1 xx dx  = ( ) 3

431
4
11 x

u
+=−  (+ C) ; 
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        and  x = 0 , y = 1 (u = 1)  gives C  and the answer   y = 
( )
( ) 3

4

3
1

3

3

15
14

x
x
+−

+
 .  

              
 (iii) Note that the question didn’t actually require you to simplify the two answers in (i) and  
        (ii), but doing so certainly enables you to have a better idea as to how to generalise the  
       results: 

y = 
( )
( ) nn

nn

xn

xn
11

1

1)2(

1)1(
+

+−+

++
. 

 
 
 
8 It is never a bad idea to start this sort of question with a reasonably accurate diagram …  
 something along the lines of 

               A 
 
              P 
       Q 
  O 
 
         B 
 
The first result is an example of what is known as the Ratio Theorem: 

AP : PB = 1 – λ : λ  ⇒  p = λa + (1 – λ)b . 
Alternatively, it can be deduced from the standard approach to the vector equation of a  straight 

line, via  r = a + λ(b – a).    
 
Using the scalar product twice then gives 

a • p = λa2 + (1 – λ)(a • b)  and  b • p = λ(a • b) + (1 – λ) b2 . 

Equating these two expressions for  cos θ , 
bpap

pbpa •
=

•
, re-arranging and collecting up 

like terms, then gives   ab{λ(a + b) – b} = a • b {λ(a + b) – b}. There are two possible 
 consequences to this statement, and both of them should be considered. Either ab = a • b,  
 which gives  cos 2θ  = 1,  θ  = 0, A = B and violates the non-collinearity of O, A & B; or  the 
bracketed factor on each side is zero, which gives 

λ = 
ba

b
+

. 

 
However, if you know the Angle Bisector Theorem, the working is short-circuited  quite  
dramatically: 

OB
OA

PB
AP

=   ⇒  
b
a

AB
AB

=
−

)(
))(1(

λ
λ

  ⇒  b – bλ = aλ  ⇒  λ = 
ba

b
+

. 

 
Next,     AQ : QB = λ : 1 – λ   ⇒  q = (1 – λ)a + λb.  
Then 
       OQ2 = q • q  = (1 – λ)2 a2 + λ2 b2 + 2λ(1 – λ) a • b 
 
      and   OP2 = p • p  = (1 – λ)2 b2 + λ2 a2 + 2λ(1 – λ) a • b . 
[N.B. This working can also be done by the Cosine Rule.] 
Subtracting: 
    OQ2 – OP2 = (b2 – a2) [λ2 – (1 – λ)2] = (b2 – a2) (2λ – 1)  
and, substituting λ in terms of a and b into this expression, gives the required answer 

  = (b – a)(b + a) × 
ab
ab

+
−

 = (b – a)2. 

 θ 
  θ 

STEP II STEP Solutions June 2008

43



 
 
 

 
 
 
9 (i)  Using a modified version of the trajectory equation (which you are encouraged to have  

       learnt),   y = h + x tan α – 2

2

2u
gx

sec2α , and substituting in  g = 10  and  u = 40  gives    

y = h + x tan α – 
320

2gx
sec2α . 

 
       Setting  x = 20  and  y = 0  into this trajectory equation and using one of the well-    
        known Pythagorean trig. identities (sec2α = 1 + tan2α) leads to the quadratic equation 

5t2 – 80t – (4h – 5) = 0 
       in  t = tan α.  
       [Note that you could have substituted  x = 20  and  y = – h  into the unmodified 
       trajectory equation and still got the same result here.]  
       Solving, using the quadratic formula, and simplifying then gives 

tan α = h5
4638 +± . 

 
       We reject  tan α = h5

4638 ++ , since this gives a very high angle of projection 
       and hence a much greater time for the ball to arrive at the stumps. Now, since α is     

       small,  cos α ≈ 1, and the time of flight = 
αcosu

x
 = 

2
1

αcos2
1

≈ . 

 
 (ii)  h > 4

5   for  tan α = 8 – ε+64 ) < 0.  
 
 (iii) Now  h = 2.5  ⇒  tan α = 8 – 164 +  = 8 – 8 ( ) 2

1

64
11+ . The Binomial Theorem then 

       allows us to expand the bracket, and it seems reasonable to take just the first term 
       past the 1:  tan α = 8 – 8 ( ).....1 128

1 ++ ,  so that  tan α ≈ – 16
1 .  [We can ignore the  

       minus sign, since this just tells us that the projection is below the horizontal.] 
       Using   tan α ≈ α  for small-angles, and converting from radians into degrees using 
       the conversion factor  180/π ≈ 57.3  then gives  α ≈ 3.6o . 
 
 
10 On this sort of question, a good, clear diagram is almost essential, even when it is not asked-for. 
         A     M           D 
        
           α 
  a          w            a – y  
               γ 
                   Y 
       a      u 
        v           y 
 
                β 
        B         x           X  (b – x)   N  b          C 
 
   (i) The two fundamental principles involved in collisions are the Conservation of Linear  
       Momentum (CLM) and Newton’s Experimental Law of Restitution (NEL or NLR). 
          For the collision at X, applying  CLM || BC   ⇒  mu sin α = mv cos β 
                         ..       NEL   ⇒   eu cos α = v sin β  
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       Dividing these two gives  tan β = e cot α   or   tan α tan β = e . 
        At Y, “similarly”, we have  tan β tan γ = e . Hence  α = γ  (since all angles are acute). 
 
    (ii) A good approach here is to use similar Δs, and a bit of sensible labelling is in order  
       (see the diagram). Let BX = x  (XN = b – x)   and   CY = y  (DY = a – y). Then  

tan α = 
a
x

,    tan β = 
xb

y
−2

,    tan γ = 
ya

b
−

. 

       Using  α = γ  to find (e.g) y in terms of a, b, x  ⇒  ax – xy= ab  ⇒  y = 
x

bxa )( −
. 

       Next, we use the result  tan α tan β = e  from earlier to get x in terms of a and b: 

                    e
xb

xbxa
a
x

=
−
−

×
2

/)(
  ⇒  x – b = 2be – ex  ⇒  x = 

e
eb

+
+

1
)21(

, 

       from which it follows that   tan α = 
)1(
)21(

ea
eb

+
+

 . 

 
       At this stage, some sort of inequality argument needs to be considered, and a couple of  
       obvious approaches might occur to you. 

       I   tan α = 
a
b

ea
be

a
b

ea
eb

>
+

+=
+
+

)1()1(
)21(

  and  tan α = 
a
b

ea
be

a
b

ea
eb 2

)1(
2

)1(
)21(

<
+

−=
+
+

    

            give  
a
b

a
b 2αtan << ;  and the shot is possible, with the ball striking BC between N  

            and C, whatever the value of e . 

       II  As  e → 0,  tan α → +
a
b

  and  as  e → 1,  tan α → −
a
b

2
3

, so that 

            
a
b

a
b

2
3αtan << ;  and the shot is possible, with the ball striking BC between N and  

         the midpoint of NC, whatever the value of e.  
 
 
 
 

 
(iii) There are two possible approaches to this final part. The first, much longer version,  
        involves squaring and adding the eqns. for the collision at X, and then again at Y, to  
        get  

v2 = u2(sin2α + e2cos2α)   and   w2 = v2(sin2β + e2cos2β). 
        Now, noting that the initial KE = 2

2
1 mu  and the final KE = 2

2
1 mw , the fraction of 

        KE lost is  2

2

2
2
1

2
2
12

2
1

1
u
w

mu
mwmu

−=
−

= 1 – (sin2α + e2 cos2α)(sin2β + e2cos2β) 

                = 1 – 
β

β
α

α
2

22

2

22

sec
tan

sec
tan ee +

×
+

. 

        From here, we use  tan α tan β = e  and  sec2α = 1 + tan2α  to get 

        1 – 22

222

2

22

/1
/

1 te
ete

t
et

+
+

×
+
+

= 1 – 
( )

( ) 222

222

2

22

/
/1

1 tet
tte

t
et

+
+

×
+
+

= 1 – e2 , as required.  

 
        However, it is very much quicker to note the following: 

  At X, the ↑-component of the ball’s velocity becomes e × initial ↑-component ,  
 and 

   at Y, the →-component of the ball’s velocity becomes e × initial →-component. 
 Hence its final velocity is  eu  and the fraction of the KE lost is then 
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2
2
1

22
2
12

2
1

mu
umemu −

 = 1 – e2. 

 
 
 
      R 
11          F    
 
               P 
 
    b           F     a 
     R 
 
 
         θ 
 
           mg        kmg 
 
 Once again, a good, clear diagram is an important starting-point, and the above diagram  shows the 
relevant forces – labelled using standard notations – along with the accelerations  of P down the sloping 
surface of the wedge (a) and the wedge itself along the plane (b). 
 

 (i)  Noting the acceleration components of P are  a cosθ  – b  (→)   and   a sin θ  (↓), we  
      employ Newton’s Second Law as follows: 
      N2L → for P  m(a cosθ  – b) = R sinθ – F cosθ 
      N2L ↓ for P        ma sin θ   = mg – F sinθ – R cosθ 
       N2L ← for wedge               kmb   = R sinθ – F cosθ  

      From which it follows that   a cosθ  – b = kb  ⇒  b = 
1

cos
+k

a θ
. 

 
       Alternatively, one could use N2L to note P’s → accln. component  and also the 
       wedge’s accln. ←, but instead use  
       CLM ↔   km bt = m (a cosθ  – b)t (where t = time from release) 
       and this again leads to the above result for b. 
 
      Now, for P to move at 45o to the horizontal,  a cosθ – b = a sinθ . Then 

b = a(cosθ  – sinθ ) = 
1

cos
+k

a θ
 

      ⇒  (k + 1)( cosθ  – sinθ) = cosθ   ⇒  k + 1 – (k + 1) tanθ  = 1   and   tanθ  = 
1+k

k
.  

 
      When  k = 3, tanθ = 4

3 , sinθ = 5
3 , cosθ = 5

4   and  b = 5
1 a . 

      Substituting these into the first two equations of motion from (i), along with the use of  
      the Friction Law (in motion), which assumes that F = μR , gives 

                m( 5
4 a – b) = 5

3 R – 5
4 F   or   3R – 4F = m(4a – 5b) = 3ma  ⇒  R(3 – 4μ) = 3ma 

        and 
                5

3 ma  = mg – 5
3 F – 5

4 R   or   4R + 3F = m(5g – 3a)  ⇒  R(4 + 3μ) = 5mg – 3ma. 
        Dividing, or equating for R :    

                
a

ag
3

35
43
34 −

=
−
+

μ
μ

 ⇒  (12 + 9μ)a = 5(3 – 4μ)g – (9 – 12μ)a  ⇒  a = 
)7(3
)43(5

μ
μ

−
− g

. 

 
 (ii) Finally, if  tanθ  ≤ μ ,  then both P and the wedge remain stationary.  So, technically,  
      the answer is “nothing”. 
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12 Clearly,  X ∈ {0 , 1 , 2 , 3} and working out the corresponding probabilities is a good thing to do at 

some point in this question (although it can, of course, be done numerically later when a value for p 
has been found). 

 p(X = 0) = (1 – p)(1 – 3
1 p) (1 – p2)  

 p(X = 1) = p(1 – 3
1 p)(1 – p2) + (1 – p) 3

1 p(1 – p2) + (1 – p)(1 – 3
1 p)p2  

                       = p(1 – p)( 3
4  + 3

5 p – p2)   
 p(X = 2) = p. 3

1 p(1 – p2) + p(1 – 3
1 p)p2 + (1 – p) 3

1 p.p2    
         = 3

1 p2(1 + 4p – 3p2)               
 p(X = 3) = 3

1 p4  
 [Of course, one of these could be deduced on a (1 – the sum of the rest) basis, but that can   
 always be left as useful check on the correctness of your working, if you so wish.] 
 
 Then  E(X) = ∑ )(. xpx  = 0 + p(1 – p)( 3

4  + 3
5 p – p2) + 3

2 p2(1 + 4p – 3p2) + p4         

              = 3
4 p + p2 

 Alternatively, if you have done a little bit of expectation algebra, it is clear that  
E(X) = 2

3
42

3
1)( pppppXE i +=++=∑ . 

Equating this to  3
4   ⇒  0 = 3p2 + 4p – 4  ⇒  0 = (3p – 2)(p + 2), and since  0 < p < 1  it follows that  

p = 3
2 .   

 
 In the final part, you will need either (p0 and p1) or  (p2 and p3): 

p0 = 243
35    and   p1 = 243

108  or p2 = 243
84    and   p3 = 243

16 . 
Next, a careful statement of cases is important (with, I hope, obvious notation): 
p(correct pronouncement) = p(G and ≥ 2 judges say G) + p(NG and ≤ 1 judges say G) 

           = t . 
243
100

 + (1 – t) . 
243
143

 = 
243

43143 t−
 

 Equating this to 2
1 and solving for t  ⇒  243 = 286 – 86t  ⇒  86t = 43  ⇒  t =  2

1 .   
        

Alternatively, let  p(King pronounces guilty) = q .  
Then  “King correct” = “King pronounces guilty and defendant is guilty”  
    or “King pronounces not guilty and defendant is not guilty” 
so that  p(King correct) = qt + (1 – q)(1 – t). 
Setting  qt + (1 – q)(1 – t) = 2

1   ⇔  (2q – 1)(2t – 1) = 0 , and since q is not identically equal  to 

2
1 ,  t = 2

1 .  
 
 
 
13 (i)  p(B in bag P) = p(B not chosen draw 1) + p(B chosen draw 1 and draw 2) 

       = 
kn

k
n
k

n
k

+
×+⎟

⎠
⎞

⎜
⎝
⎛ −    1   

       = ( )2))((
)(

1 kknkn
knn

++−
+

 

       = 
kn

n
+

     

      This has its maximum value of 1 for  k = 0, and for no other values of k. Since 

      p = 
kn

k
+

−    1  ≤ 1  and for  k = 0, p = 1  but  k > 0 for all  p < 1). 
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(ii) p(Bs in same bag) = p(B1 chosen on D1 and neither chosen on D2)  
    + p(B1 chosen on D1 and both chosen on D2) 
     + p(B1 not chosen on D1 and B2 chosen on D2) 
 

     = 
kn

k
n
k

C
C

n
k

C
C

n
k

k
kn

k
kn

k
kn

k
kn

+
×⎟
⎠
⎞

⎜
⎝
⎛ −+×+× +

−
−+

+

−+

12
22

 

 
      Notice that, although the nCr terms look very clumsy, they are actually quite simple  
     once all the cancelling of common factors has been undertaken. 
 

    = 
)(
)(

)1)((
)1(

)1)((
)1(

knn
knk

knkn
kk

n
k

knkn
nn

n
k

+
−

+
−++

−
×+

−++
−

×  

 

    = 
⎭
⎬
⎫

⎩
⎨
⎧

−++
+−−−++−+−

)1)((
)( 2222

knkn
kknknnknkknn

n
k

 

 

    = 
)1)((

)1(2
−++

−
knkn

nk
       

 
      Differentiating this expression gives 

      
k
p

d
d

 = 
[ ]2

22

)1)((
)122()1(2)1(2)2(

−++
−+×−−−×−−++

knkn
knnknknknkn

 

 
  = 0  when  n2 + 2nk + k2 – n – k = 2nk + 2k2 – k  since n > 2,  n – 1 ≠ 0 
 
      ⇒  k2 = n(n – 1) . 
      Now there is nothing that guarantees that k is going to be an integer (quite the contrary,  
     in fact), so we should look to the integers either side of the (positive) square root of       
     n(n – 1): 

k = [ ])1( −nn    and   k = [ ])1( −nn  + 1 . 

      In fact, since  n2 – n = (n – ½ )2 – ¼ ,  [ ])2 nn −  = n – 1  and we find that, 
 

when  k = n – 1 ,   p = 
12

1
)1(2)12(

)1(2 2

−
−

=
−−

−
n

n
nn

n
  

 

and when  k = n ,  p = 
12

1
)12)(2(

)1(2
−
−

=
−

−
n

n
nn

nn
  also, 

 
and  k = n – 1 , n  are the two values required.            
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STEP Mathematics III 2008: Solutions 
 
  
 
1. Following the hint yields    

 ( ) ( )ax by a b xy x y2 2 1
3

+ + + = +    

 which is ( )1
5

1
3

+ = +xy x y     

 

The same trick applied to the third equation gives ( )1
7

1
3

1
5

+ = +xy x y  . 

The two equations can be solved simultaneously for xy and (x+y), giving 

xy =
3

35
 and ( )x y+ =

6
7

     

          
Thus x and y are the roots of the quadratic equation 35 30 3 02z z− + =    
(x and y are interchangeable). 
a and b are then found by substituting back into two of the original equations and the 
full solution is 

x

y

a

b

= ± = ±

= =

= =

= ± = ±

3
7

2
35

30
3
7

2
7

6
5

3
7

2
35

30
3
7

2
7

6
5

1
2

30
36

1
2

1
6

5
6

1
2

30
36

1
2

1
6

5
6

m m

m m

 

 
 
2. (i) On the one hand 

( )[ ] ( ) ( )r r r r r r nk k

r

n
k k

r

n
k

r

n
k

r

n

r

n
k+ − = + − = − = +

= = =

+

==
∑ ∑ ∑ ∑∑1 1 1

0 0 1

1

00
 whilst expanding 

binomially yields      
 

( ) ( ) ( ) ( ) ( )

k r
k

r
k

r
k

k
r

kS n
k

S n
k

S n
k

k S n n

k

r

n
k

r

n
k

r

n
k

r

n

r

n

k k k

−

=

−

=

−

=

−

==

− − −

∑ ∑ ∑ ∑∑+
⎛
⎝
⎜
⎞
⎠
⎟ +

⎛
⎝
⎜
⎞
⎠
⎟ + +

−
⎛
⎝
⎜

⎞
⎠
⎟ +

= +
⎛
⎝
⎜
⎞
⎠
⎟ +

⎛
⎝
⎜
⎞
⎠
⎟ + +

−
⎛
⎝
⎜

⎞
⎠
⎟ + +

1

0

2

0

3

0

1

00

1 2 3 1

2 3 1
1

2 3 1 1

...

...

 

and hence the required result. 
 
Applying this in the case k = 4  gives 

( ) ( ) ( ) ( ) ( )4 1 1
4
2

4
33

4
2 1S n n n S n S n= + − + −

⎛
⎝
⎜
⎞
⎠
⎟ −

⎛
⎝
⎜
⎞
⎠
⎟    
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which, after substitution of the two given results and factorization, yields the familiar 

( ) ( )S n n n3
2 21

4
1= +        

The identical process with k = 5 results in    

( ) ( )( ) ( )( )( )S n n n n n n n n n n n4
3 2 21

30
1 6 9 1

1
30

1 2 1 3 3 1= + + + − = + + + −   

           
(ii) Applying induction, with the assumption that ( )S nt is a polynomial of degree 
t +1  in n  for t r< for some r , and then considering (*),  
( ) ( )n nr+ − ++1 11  is a polynomial of degree r +1 in n  ,     

and each of the terms ( )−
+⎛

⎝
⎜

⎞
⎠
⎟ + −

r
j S nr j

1
1  is a polynomial of degree r j+ −2  in 

n where j ≥ 2  , i.e. the degree is ≤ r .  A sum of polynomials of degree ≤ +r 1 in n , 
is a polynomial of degree ≤ +r 1 in n , and there is a single non-zero term in nr+1  
from just ( )n r+ +1 1  so the degree of the polynomial is not reduced to < +r 1 , i.e. it is 
r +1.  (The initial case is true to complete the proof.)  

If, ( )S n a n rk i
i

i

k
k

r

n

= =
=

+

=
∑ ∑

0

1

0
then ( )S a a rk i

i

i

k
k

r
0 0 00

1

1

0

0

= + = =
=

+

=
∑ ∑  and so a0 0=  

           

( )S a rk i
i

i

k
k

r
1 1 1

0

1

0

1

= = =
=

+

=
∑ ∑  and so ai

i

k

=

+

∑ =
0

1

1as required.   

           
 

3. 
dy
dx

b
a

=
−

cos
sin
θ
θ

      

So the line ON  is y
a
b

x=
sin
cos

θ
θ

     

SP  is ( ) ( )y
b

a e
x ae=

+
+

sin
cos

θ
θ

    

           
Solving simultaneously by substituting for x to find the y coordinate of T, 

( )y
b

a e
b
a

y ae=
+

+
⎛
⎝⎜

⎞
⎠⎟

sin
cos

cos
sin

θ
θ

θ
θ

    

and using ( )b a e2 2 21= − to eliminate a 2 gives the required result.    

Then the x coordinate of T is ( )
b

a e

2

1
cos

cos
θ
θ+

 . 

Eliminating θ  using secθ + =e
b
ax

2

 and tanθ =
by
ax

,  

( )x y,  satisfies
b
ax

e
by
ax

2 2 2

1−
⎛
⎝
⎜

⎞
⎠
⎟ = +

⎛
⎝⎜

⎞
⎠⎟        

and again using ( )b a e2 2 21= − , this time to eliminate b2 , gives, following 
simplifying algebra     
( )x ae y a+ + =2 2 2 , as required. 
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4. (i) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The graph of z y= has gradient 1 and passes through the origin.     

The graph of z
y

=
⎛
⎝⎜

⎞
⎠⎟tanh

2
which has gradient 

1
2 2

1
2

2sech
y⎛

⎝⎜
⎞
⎠⎟ ≤  for y ≥ 0  also passes 

though the origin and is asymptotic to z = 1. 

Thus y
y

≥
⎛
⎝⎜

⎞
⎠⎟tanh

2
 for y ≥ 0 .  

If x y= cosh , then 
x
x

y
y

y

y
y−

+
=

−
+

=

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
=

⎛
⎝⎜

⎞
⎠⎟

1
1

1
1

2
2

2
2

2

2

2

cosh
cosh

sinh

cosh
tanh  

and as y
y

≥
⎛
⎝⎜

⎞
⎠⎟tanh

2
 for y ≥ 0 , ar x

x
x

cosh ≥
−
+

1
1

 for x ≥ 1. 

x
x

x
x

x
x

x
x

−
+

=
−
+

−
−

=
−

−

1
1

1
1

1
1

1
12

 for x > 1, and (*) is obtained.   

  
(ii) By parts ar xdx xar x x ccosh cosh= − − +∫ 2 1    

and 
x
x

dx x ar x c
−

−
= − − + ′∫

1
1

1
2

2 cosh     

Thus ar xdx
x
x

dx
xx

cosh ≥
−

−
∫∫

1
12

11

 for x > 1 gives  

 
xar x x x ar xcosh cosh− − ≥ − −2 21 1  for x > 1, which rearranges to give result
         
(iii) Integrating (ii) similarly gives ( )xar x x x ar xcosh cosh− − ≥ − −2 21 2 1  
for x > 1, which also can be rearranged as desired. 

STEP III STEP Solutions June 2008

52



 
5. There are a number of correct routes to proving the induction, though the 

simplest is to consider ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )T x T x T x T x T x T xk k k k k k+ + − +− − −1
2

2
2

1 1   

 
For ( )f x = 0 , ( )( ) ( ) ( )T x T x T xn n n

2

1 1 0− =− +  
 

and so 
( )
( )

( )
( )

T x
T x

T x
T x

n

n

n

n

+

−

=1

1
 provided that neither denominator is zero, leading to 

( )
( )

( )
( ) ( )T x

T x
T x
T x

r xn

n−
= =

1

1

0
,     

and so 
( )
( )

( )
( )

( )
( ) ( )( )T x

T x
T x
T x

T x
T x

r xn

n

n

n

n

−

−

−

× × × =
1

1

2

1

0
...  

Thus ( ) ( )( ) ( )T x r x T xn
n

= 0          
           
Substituting this result into (*) for n = 1, 

( )( ) ( )( ) ( )r x xr x T x2
02 1 0− + = , and as ( )T x0 0≠ , solving the quadratic gives 

( )r x x x= ± −2 1        
           
6. (i) Differentiating y p xp= +2 2 with respect to x gives    

p p
dp
dx

x
dp
dx

p= + +2 2 2  which can be rearranged suitably.  

 The differential equation
dx
dp p

x+ = −
2

2  has an integrating factor p2

 and integrating will give the required general solution.  

 Substituting x p= = −2 3, , leads to A = 0 , i.e. p x= −
3
2

 which can be 

substituted in the original equation and so y x= −
3
4

2 .   

    

(ii) The same approach as in part (i) generates 
( )dx

dp p
x

p
p

+ = −
+2 1ln

 ,

  which with the same integrating factor has general solution 

x p Bp= − − + −1
4

1
2

2ln        

and particular solution    

x p= − −
1
2

1
4

ln    

     
Again, substitution of ln p (and p) in the original equation leads to the solution 

which is y e
x

= −
− −1

2
2

1
2          
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7. The starting point ( )( )c a i b a− = + −
1
2

1 3  leads to the given result.

     
 Interchanging a and b gives ( ) ( )2 3c a b i a b= + + − if A, B, C are described 
clockwise. 
        
(i) The clue to this is the phrase “can be chosen” and a sketch demonstrates that a 
pair of the equilateral triangles need to be clockwise, and the other pair anti-clockwise 

 
 
 
 
 
 
 
 
 

      
Applying the results in the stem of the question to this configuration, 

 ( ) ( )2 3p d e i e d= + + −  
  ( ) ( )2 3q e f i e f= + + −  

 ( ) ( )2 3r f g i g f= + + −  

 ( ) ( )2 3s g d i g d= + + −       
 

and so ( ) ( )2 3 2PS g e i g e RQ= − + − = − ,  PSQR is a parallelogram. 
(The pairs could have been chosen with opposite parity leading to very similar 
working.) 

 
(ii) Supposing LMN is clockwise, U is the centroid of equilateral triangle LMH, V 
of MNJ, and W of NLK, then 
3u l m h= + +  where ( ) ( )2 3h l m i m l= + + −  with similar results for v and w. 
 
Both 6w , and  ( ) ( )[ ]3 3u v i u v+ + −  can be shown to equal ( ) ( )3 3n l i l n+ + −  and 
so UVW is a clockwise equilateral triangle.  
          

8. (i) p = −
1
2

       

( )1
1
3

+ =px S x  with all other terms cancelling and so ( )S x x
x

x
= −

⎛
⎝⎜

⎞
⎠⎟ = −

1
3

1
1
2

2
3 2
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Using the sum of a GP    

 Sn+ =1

1
3

1
6

1
12

1
3 2

2 3 1x x x xn
n+ + + +

×
+...  =

1
3

1
2

1
2

1

1x
x

x

n

n−
⎛
⎝
⎜

⎞
⎠
⎟

−
⎛
⎝⎜

⎞
⎠⎟

+

+

 

Alternatively S S a x S x Sn n
n

n
n

+ +
+

+
+= − + = −1 2

2
1

11
2

( ...)     

( )= −
⎛
⎝
⎜

⎞
⎠
⎟

−

+

+1
2

2
3 2

1

1

x x
x

n

n        

 
 (ii) Using similar working to part (i) 

 
37 18 8 0+ + =p q      

so p q= − =
5
2

1,  

and so ( )1 2 32+ + = +px qx T x       

giving ( ) ( )( )T x x x
x

x x
x

x x
= + − +

⎛
⎝⎜

⎞
⎠⎟ =

+
− +

=
+

− −
2 3 1

5
2

4 6
2 5 2

4 6
2 1 2

2
2    

 By partial fractions ( )T x
x

= − − −
⎛
⎝⎜

⎞
⎠⎟

−
−14

3
1 2

8
3

1
2

1
1

 

and so ( ) ( )( )T x x x
x x x

n
n

n

+ = + + + + − + +
⎛
⎝⎜

⎞
⎠⎟ + +

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟1

2
214

3
1 2 2 2

8
3

1
2 2 2

... ...   

 
( )( )

=
−

−
−

− ⎛⎝⎜
⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟

−

+

+

14
3

1 2
1 2

8
3

1
2

1
2

1

1

x
x

x

x

n

n

    

          
Section B: Mechanics 
 
 
9. When the particle starts to move, friction is limiting and so
 mg T mgsinπ μ0 0− =        

i.e. μ π= sin T0         
          

18 8 2 0+ + =p q
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(i)   
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
When the particle comes to rest, the area under the acceleration-time graph is zero  

i.e. g t gdto
T

sinπ μ− =∫ 0
0

1

     

Completing the manipulation and eliminating T0  using the relation at the start of the 
question renders the required result. 
  
 (ii) 

 

 
 

In the case μ μ= 0 , the motion is periodic with period 2, the particle is 

stationary in intervals ( )0 0,T , ( )11 0, + T , ( )2 2 0, + T … , reversing its direction 
of motion after times 1, 2, 3, … , and returning to its starting point at time 2 
(and 4,6….)  
 
In the case μ = 0 , the motion is simple harmonic motion (period 2) 
superimposed on uniform motion , the particle instantaneously comes to rest at 
time 2, 4, …but otherwise always moves in the positive x direction. 

( ( )x
g

t t= −
π

π π2 sin ) 
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10. Considering the rth short string T mg Tr r= + −1   

Also we have T
x
lr

r=
λ

, and T mg1 =  

Thus T rmgr =  and so the total length is given by ( )l xr

n

+∑
1

= +
⎛
⎝⎜

⎞
⎠⎟∑ l

rmgln

λ1
 

( )
= +

+
nl

mgl n n
λ

1
2

  

The elastic energy stored is 
λx

l
r

n 2

1 2∑  = ⎛
⎝⎜

⎞
⎠⎟∑λ

λ
lmg r

l

n

1

2 2

2
( )( )= + +

m g l
n n n

2 2

12
1 2 1

λ
 

           
   
For the uniform heavy rope, we let M nm= , L nl0 = , and consider the limit as n →∞  

( )
L L

M
n

g L
n

n n
= +

+⎛
⎝⎜

⎞
⎠⎟

lim 0
0 1

2λ
= +

⎛
⎝⎜

⎞
⎠⎟L

Mg
0 1

2λ
 

and the elastic energy stored is 

( )( ) ( )( )
lim lim

m g l
n n n

M g L n n n
n

2 2 2 2
0

312
1 2 1

12
1 2 1

λ λ
+ +

⎛
⎝
⎜

⎞
⎠
⎟ =

+ +⎛

⎝
⎜

⎞

⎠
⎟ =

M g L2 2
0

6λ
  

and eliminating M using the result just found for L we obtain 
( )2

3
0

2

0

λ L L
L
−

 

     
11. If the resistance couple (constant) is L, then using L I= α  for the second 

phase of the motion, L
I
T

=
ω0  and rotational kinetic energy used up doing work 

against the couple in the second phase gives 

  
1
2

20
2

2I L nω π= × ×      

Hence, eliminating L and simplifying gives the first result.    
           
If the particle descends a distance h in the first phase of motion, then h rn= 2 1π . If 
the particle has speed v at the end of the first phase, then v r= ω0    
and using the work-energy principle, 

mgh L n I mv− × × = +1 0
2 22

1
2

1
2

π ω     

Hence, eliminating h, v and ω0
2 obtains the second result. 

      

STEP III STEP Solutions June 2008

57



Section C: Probability and Statistics 
 
12.  
 

 

( ) ( )M e f x dxx
xθ θ=

−∞

∞

∫ ( ) ( )= ++

−∞

− −
∞

∫ ∫
1
2

1
2

1
0

1

0

e dx e dxx xθ θ

( )
( )[ ] ( )

( )[ ]=
+

−
−

+

−∞

− − ∞1
2 1

1
2 1

1 0 1
0θ θ

θ θe ex x  ( ) ( )=
+

+
−

1
2 1

1
2 1θ θ

 (requiring θ < 1)

   
( )= −

−
1 2 1

θ      
          

( ) ( ) ( )( )Var X M Mx x= ″ − ′0 0
2

     

( ) ( )M x
′ = −

−
θ θ θ2 1 2 2

, ( ) ( ) ( )M x
″ = − + −

− −
θ θ θ θ2 1 8 12 2 2 3

    

and so ( )M x
′ =0 0 ,  ( )M x

″ =0 2 ,  ( )Var X = 2    
 

Or alternatively, ( ) ( )M E e E X Xx
Xθ θ θθ= = + + +⎛

⎝⎜
⎞
⎠⎟1

1
2

2 2 .....    

( )= − = + + +
−

1 12 1 2 4θ θ θ .....       

and so ( )E X = 0 ,  E X
1
2

12⎛
⎝⎜

⎞
⎠⎟ = ,  ( ) ( ) ( )( )Var X E X E X= − =2 2 2   

          

If T Y n= 2 , then ( ) ( ) ( )( )M E e E e E e
nT

T X n n
X

i

n n

i i
θ

θθ θ
θ

= = ∑ =
⎛

⎝
⎜

⎞

⎠
⎟ = −

⎛
⎝
⎜

⎞
⎠
⎟

=

−

∏2 2

1

2

1
2
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( )( )log log .....M n
n

n
n n nT θ

θ θ θ θ
= − −

⎛
⎝
⎜

⎞
⎠
⎟ = − − − − −

⎡

⎣
⎢

⎤

⎦
⎥1

2 2 8 24

2 2 4

2

6

3 = + + +
θ θ θ2 4 6

22 8 24n n
.....

Thus as n → ∞ ,  ( )( )log MT θ
θ

→
2

2
 , and so ( )MT θ

θ
→

⎛
⎝
⎜

⎞
⎠
⎟exp

2

2
    

          

( )P Y ≥ = ⋅25 0 05  and  ( )P Y n2 1 96 0 05≥ ⋅ = ⋅  and so    

25 1 96 2= ⋅ n         

2
25

1 96
625
4

2

2n =
⋅

≈  

n ≈ ≈
625
8

78         

 
 
 

13. P( 1 ring created at first step) = 
1

2 1n −
,  

 P( 0 rings created at first step) = 
2 2
2 1
n
n
−
−

     

E( number of rings created at first step) = 
1

2 1
1

2 2
2 1

0
1

2 1n
n
n n−

× +
−
−

× =
−

 

  
           
Regardless of what happens at first step, after the first step there 2 2n −  free ends.  
Similarly after second step 2 4n −  free ends regardless, etc.   

E( number of rings at end of process) = 
1

2 1
1

2 3
1

2 5
1

2 7
1
1n n n n−

+
−

+
−

+
−

+ +......  

          
Var( number of rings at end of process) =    

1
2 1

1
2 1

1
2 3

1
2 3

1
2 5

1
2 5

1
2 7

1
2 7

1
1

1
1

2 2 2 2 2

n n n n n n n n−
−

−
⎛
⎝⎜

⎞
⎠⎟ +

−
−

−
⎛
⎝⎜

⎞
⎠⎟ +

−
−

−
⎛
⎝⎜

⎞
⎠⎟ +

−
−

−
⎛
⎝⎜

⎞
⎠⎟ + + −

⎛
⎝⎜
⎞
⎠⎟......

(as numbers of rings created at each step are independent)   
( )

( )
( )

( )
( )

( )
=

−
−

+
−
−

+
−
−

+ +
2 1
2 1

2 2
2 3

2 3
2 5

2
32 2 2 2

n
n

n
n

n
n

......        

           
 

For n = 40000, E( number of rings created) = 1
1
3

1
5

1
79999

+ + + +.....    

= + + + + + + + + +
⎛
⎝⎜

⎞
⎠⎟1

1
2

1
3

1
4

1
5

1
80000

1
2

1
4

1
80000

..... _ .....     

≈ −ln ln80000
1
2

40000         

= 2 20ln  
≈ 6           
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