STEP 2022, P2, Q12 - Solution (4 pages; 19/2/24)

(i) 1st Part

$$\int_0^1 k x^n (1 - x) dx = 1,$$

so that
$$k \left[\frac{1}{n+1} x^{n+1} - \frac{1}{n+2} x^{n+2} \right] = 1$$

$$\Rightarrow k\left(\frac{1}{n+1} - \frac{1}{n+2}\right) = 1$$

$$\Rightarrow \frac{k}{(n+1)(n+2)} = 1$$

and k = (n + 1)(n + 2), as required.

2nd Part

$$\mu = \int_0^1 x \cdot kx^n (1-x) dx$$

$$= k \left[\frac{1}{n+2} x^{n+2} - \frac{1}{n+3} x^{n+3} \right]_{0}^{1}$$

$$=k\left(\frac{1}{n+2}-\frac{1}{n+3}\right)$$

$$=\frac{k}{(n+2)(n+3)}$$

$$=\frac{(n+1)(n+2)}{(n+2)(n+3)}$$

$$=\frac{(n+1)}{(n+3)}$$

[Note that $0 < \mu < 1$, and that $\mu \to 1$ as $n \to \infty$, as expected.]

(ii) 1st Part

Let m be the median of X.

Then
$$\int_0^m kx^n (1-x) dx = \frac{1}{2}$$
,
so that $k \left[\frac{1}{n+1} x^{n+1} - \frac{1}{n+2} x^{n+2} \right]_0^m = \frac{1}{2}$
 $\Rightarrow k \left(\frac{1}{n+1} m^{n+1} - \frac{1}{n+2} m^{n+2} \right) = \frac{1}{2}$
and $(n+2)m^{n+1} - (n+1)m^{n+2} = \frac{1}{2}$

Now, the LHS of this equation is an increasing function of m (being the probability that $X \le m$), and so when $m > \mu$, $(n+2)m^{n+1} - (n+1)m^{n+2} > (n+2)\mu^{n+1} - (n+1)\mu^{n+2}$ and v.v.

ie
$$m > \mu \Leftrightarrow \frac{1}{2} > (n+2) \left[\frac{(n+1)}{(n+3)} \right]^{n+1} - (n+1) \left[\frac{(n+1)}{(n+3)} \right]^{n+2}$$

 $\Leftrightarrow (n+3)^{n+2}$
 $> 2(n+2)(n+3)(n+1)^{n+1} - 2(n+1)^{n+3}$
 $\Leftrightarrow (n+3)^{n+2} > 2(n+1)^{n+1} \left[(n+2)(n+3) - (n+1)^2 \right]$
 $\Leftrightarrow (n+3)^{n+2} > 2(n+1)^{n+1} \left[3n+5 \right]$
 $\Leftrightarrow (n+3) \left(\frac{n+3}{n+1} \right)^{n+1} > 2 \left[3n+5 \right]$

$$\Leftrightarrow \left(1 + \frac{2}{n+1}\right)^{n+1} > \frac{2(3n+5)}{n+3} = \frac{6(n+3)-8}{n+3} = 6 - \frac{8}{n+3}$$

Thus,
$$\left(1 + \frac{2}{n+1}\right)^{n+1} > 6 - \frac{8}{n+3} \Rightarrow m > \mu$$
, as required.

2nd Part

$$\left(1 + \frac{2}{n+1}\right)^{n+1}$$

$$> 1 + (n+1)\left(\frac{2}{n+1}\right) + \binom{n+1}{2}\left(\frac{2}{n+1}\right)^2 + \binom{n+1}{3}\left(\frac{2}{n+1}\right)^3$$

$$= 1 + 2 + \frac{2n}{n+1} + \frac{4n(n-1)}{3(n+1)^2}$$

$$= \frac{9(n+1)^2 + 6n(n+1) + 4n(n-1)}{3(n+1)^2}$$

$$= \frac{19n^2 + 20n + 9}{3(n+1)^2}$$

$$= \frac{18(n+1)^2 + n^2 - 16n - 9}{3(n+1)^2}$$

$$= 6 + \frac{n^2 - 16n - 9}{3(n+1)^2}$$

Thus $m > \mu$ provided that $\frac{n^2 - 16n - 9}{3(n+1)^2} > -\frac{8}{n+3}$

ie provided that $(n^2 - 16n - 9)(n + 3) + 24(n + 1)^2 > 0$ (*)

Then LHS of (*) = $n^3 + 11n^2 - 9n - 3 = f(n)$, say.

Now f(2) > 0, and f(n) is increasing for n > 2.

So, as n > 1, f(n) > 0, as required, and so $m > \mu$.

(iii) Let M be the mode of X.

$$f(x) = kx^n(1-x)$$

and
$$f'(x) = knx^{n-1} - k(n+1)x^n$$
,

so that f'(x) = 0 when n - (n+1)x = 0; ie when $x = \frac{n}{n+1}$

Thus f(x) has a local maximum when $x = \frac{n}{n+1}$ (and there are no other stationary points).

Then, as f(0) = f(1) = 0, and f(x) > 0 for 0 < x < 1, it follows that the greatest value of f(x) occurs at $x = \frac{n}{n+1}$; ie $M = \frac{n}{n+1}$

From the 1st Part of (ii),

$$(n+2)m^{n+1} - (n+1)m^{n+2} = \frac{1}{2}$$
,

and once again, M > m if $(n + 2)M^{n+1} - (n + 1)M^{n+2} > \frac{1}{2}$;

ie if
$$(n+2)(\frac{n}{n+1})^{n+1} - (n+1)(\frac{n}{n+1})^{n+2} > \frac{1}{2}$$

$$\Leftrightarrow (n+2-n)(\frac{n}{n+1})^{n+1} > \frac{1}{2}$$

$$\Leftrightarrow (\frac{n}{n+1})^{n+1} > \frac{1}{4}$$

 $\Leftrightarrow (\frac{n+1}{n})^{n+1} < 4$ (as both sides of the previous inequality are positive)

or
$$(1 + \frac{1}{n})^{n+1} < 4$$
 (*)

Now,
$$(1+\frac{1}{2})^{2+1} = \frac{27}{8} < 4$$
,

and given that $(1 + \frac{1}{n})^{n+1}$ is a decreasing function of n,

(*) will hold for n > 1, as required; so that M > m