STEP 2019, P2, Q2 - Solution (3 pages; 9/7/20)

1st part

[To show algebraically: let y = f(t), so that dy = f'(t)dt

and
$$\int_0^{f(x)} f^{-1}(y) dy = \int_0^x t f'(t) dt$$

=
$$[tf(t)]_0^x - \int_0^x f(t)dt$$
, by Parts

Then $\int_0^x f(t)dt + \int_0^{f(x)} f^{-1}(y)dy = xf(x)$, as required.]

 $\int_0^x f(t)dt$ is area A in the diagram

And on the curve y = f(t), $f^{-1}(y) = t$,

so that area B is
$$\lim_{\delta y \to 0} \sum_{y=0}^{f(x)} t \delta y = \int_0^{f(x)} f^{-1}(y) dy$$

And area A + area B = xf(x), as required.

(i) 1st part

$$(g(t))^3 + g(t) = t \Rightarrow (g(0))^3 + g(0) = 0$$

$$\Rightarrow g(0)\{(g(0))^2 + 1\} = 0$$

Then, as $(g(0))^2 + 1 > 0$, g(0) = 0, as required.

2nd part

$$(g(t))^{3} + g(t) = t \Rightarrow 3(g(t))^{2}g'(t) + g'(t) = 1$$

$$\Rightarrow g'(t) \left\{ 3(g(t))^{2} + 1 \right\} = 1$$

$$\Rightarrow g'(t) = \frac{1}{\left\{ 3(g(t))^{2} + 1 \right\}} > 0, \text{ as } 3(g(t))^{2} + 1 > 0$$

3rd part

Use the initial result, with f(t) = g(t) and x = 2

Let
$$u(y) = g^{-1}(y)$$
, so that $g(u) = y$

Then
$$(g(t))^3 + g(t) = t \Rightarrow y^3 + y = u$$

Also, $(g(2))^3 + g(2) = 2$, and g(2) = 1 is a solution, by inspection.

Consider the cubic $y = x^3 + x - 2$

$$\frac{dy}{dx} = 3x^2 + 1 > 0$$
, and so there is only one solution to

$$x^3 + x - 2 = 0$$
, and hence $g(2) = 1$ is the only solution.

Then
$$\int_0^x f(t)dt + \int_0^{f(x)} f^{-1}(y)dy = xf(x)$$

$$\Rightarrow \int_0^2 g(t)dt + \int_0^1 y^3 + y \, dy = 2g(2) = 2$$

$$\Rightarrow \int_0^2 g(t)dt = 2 - \left[\frac{1}{4}y^4 + \frac{1}{2}y^2\right]_0^1 = 2 - \left(\frac{1}{4} + \frac{1}{2}\right) = \frac{5}{4}$$

(ii) Let
$$h(t) = k(t) + a$$
, so that $(k(t) + a)^3 + k(t) + a = t + 2$, and we want $k(0) = 0$, so that $a^3 + a = 2$

So let a = 1

Then
$$3(k(t) + 1)^2 k'(t) + k'(t) = 1$$
,

so that
$$k'(t) = \frac{1}{3(k(t)+1)^2+1} > 0$$

Let
$$u(y) = k^{-1}(y)$$
, so that $k(u) = y$

Then
$$(k(t) + 1)^3 + k(t) + 1 = t + 2 \Rightarrow (y + 1)^3 + y + 1 = u + 2$$

 $\Rightarrow u = y^3 + 3y^2 + 4y$

Also,
$$(k(8) + 1)^3 + k(8) + 1 = 8 + 2$$
, giving $k(8) = 1$

Then, with f(t) = k(t) and x = 8,

$$\int_0^8 k(t)dt + \int_0^1 y^3 + 3y^2 + 4y \, dy = 8k(8) = 8$$

so that
$$\int_0^8 h(t) - 1 dt + \left[\frac{1}{4}y^4 + y^3 + 2y^2\right] \frac{1}{0} = 8$$

$$\Rightarrow \int_0^8 h(t) \ dt = 8 + [t]_0^8 - (\frac{1}{4} + 1 + 2)$$

$$=8+8-\frac{13}{4}$$

$$=\frac{64-13}{4}=\frac{51}{4}$$

[Note: In the official sol'ns, h(t) = g(t + 2), and $h(0) \neq 0$; but the initial result can be modified, by changing the lower limit of the 2nd integral to h(0). This can be seen from a new sketch - see below.]

