STEP 2018, P3, Q2 - Solution (3 pages; 23/5/19)
(i) $\frac{d y_{n}}{d x}=(-1)^{n}\left(-\frac{1}{z^{2}}\right) \frac{d z}{d x} \frac{d^{n} z}{d x^{n}}+(-1)^{n}\left(\frac{1}{z}\right) \frac{d^{n+1} z}{d x^{n+1}}(1)$
and $\left(-\frac{1}{z^{2}}\right) \frac{d z}{d x}=\frac{1}{z}\left(-\frac{1}{z}\right)(-2 x) z=2 x\left(\frac{1}{z}\right)$,
and $(-1)^{n}=-(-1)^{n+1}$,
so that (1) $=2 x y_{n}-y_{n+1}$
(ii) From (i), the required result will be true if $\frac{d y_{n}}{d x}=2 n y_{n-1}$

When $n=1$, RHS $=2 y_{0}=2$
Now $y_{1}=-\frac{1}{z} \frac{d z}{d x}=-\frac{1}{z}(-2 x) z=2 x$, so that $L H S=\frac{d y_{1}}{d x}=2$
Thus the result is true for $n=1$.
Assume that the result is true for $n=k$, so that
$y_{k+1}=2 x y_{k}-2 k y_{k-1}$
The aim is to prove that it is then true that
$y_{k+2}=2 x y_{k+1}-2(k+1) y_{k}(3)$ (the result for $\left.n=k+1\right)$
From (i), $y_{k+2}=2 x y_{k+1}-\frac{d y_{k+1}}{d x}$
and by (2), $\frac{d y_{k+1}}{d x}=2 y_{k}+2 x \frac{d y_{k}}{d x}-2 k \frac{d y_{k-1}}{d x}$,
which by (i) equals $2 y_{k}+2 x\left(2 x y_{k}-y_{k+1}\right)-2 k\left(2 x y_{k-1}-y_{k}\right)$
$=y_{k}\left(2+4 x^{2}+2 k\right)-2 x y_{k+1}-4 k x y_{k-1}$
which by (2) equals
$y_{k}\left(2+4 x^{2}+2 k\right)-2 x\left(2 x y_{k}-2 k y_{k-1}\right)-4 k x y_{k-1}$
$=y_{k}(2+2 k)$,
so that (4) becomes $y_{k+2}=2 x y_{k+1}-2 y_{k}(1+k)$,
which is the required result (3).
So if the result is true for $n=k$, then it is true for $n=k+1$.
As the result is true for $n=1$, it is therefore true for $n=2,3, \ldots$, and hence all integer $n \geq 1$, by the principle of induction.
$y_{n+1}^{2}-y_{n} y_{n+2}-2 n\left(y_{n}^{2}-y_{n-1} y_{n+1}\right)-2 y_{n}^{2}$
$=4 x^{2} y_{n}^{2}+4 n^{2} y_{n-1}^{2}-8 x n y_{n} y_{n-1}$
$-y_{n}\left(2 x y_{n+1}-2(n+1) y_{n}\right)-2(n+1) y_{n}^{2}+2 n y_{n-1} y_{n+1}$
$=4 x^{2} y_{n}^{2}+4 n^{2} y_{n-1}^{2}-8 x n y_{n} y_{n-1}$
$-2 x y_{n}\left(2 x y_{n}-2 n y_{n-1}\right)+2 n y_{n-1}\left(2 x y_{n}-2 n y_{n-1}\right)$
$=0$, which proves the required result.
(iii) To carry out a proof by induction, result to prove: $y_{1}^{2}-y_{0} y_{2}>0($ when $n=1)$

By definition, $y_{1}=-\frac{1}{z} \frac{d z}{d x}=-\frac{1}{z}(-2 x) z=2 x$
and by the first result established in (ii):
$y_{2}=2 x y_{1}-2 y_{0}=4 x^{2}-2$
So $y_{1}^{2}-y_{0} y_{2}=4 x^{2}-\left(4 x^{2}-2\right)=2>0$
Thus the result is true for $n=1$.
Then, if true for $n=k$, the 2 nd result established in (ii)
\Rightarrow it is true for $n=k+1$, as the expression for $n=k+1$ equals $2 n \times($ the expression for $n=k)+2 y_{n}^{2}$; ie the sum of a positive quantity and a non-negative quantity.

And so (by the same reasoning as before), the required result is proved by induction.

