## **STEP 2018, P3, Q1 - Solution** (4 pages; 22/5/19)

(i) 
$$f(\beta) = \beta - \frac{1}{\beta} - \frac{1}{\beta^2}$$
  
 $f'(\beta) = 1 + \frac{1}{\beta^2} + \frac{2}{\beta^3}$   
 $f'(\beta) = 0 \Rightarrow \beta^3 + \beta + 2 = 0$   
 $f'(-1) = 0$ , so there is a stationary point at  $(-1, -1)$   
And, as  $\frac{d}{d\beta}(\beta^3 + \beta + 2) = 3\beta^2 + 1 > 0$ , the cubic  $y = \beta^3 + \beta + 2$   
crosses the  $\beta$ -axis only once, and so  $(-1, -1)$  is the only  
stationary point.

Also, 
$$f''(\beta) = -\frac{2}{\beta^3} - \frac{6}{\beta^4}$$

and f''(-1) = -4 < 0, so that the point is a local maximum.

As 
$$\beta \to 0^+$$
,  $f(\beta) \to -\infty$ , and as  $\beta \to 0^-$ ,  $f(\beta) \to -\infty$  also.

Also, as  $\beta \to \infty$ ,  $f(\beta) \to \beta^-$ , whilst as  $\beta \to -\infty$ ,  $f(\beta) \to \beta^+$ 



fmng.uk

$$g(\beta) = \beta + \frac{3}{\beta} - \frac{1}{\beta^2}$$
$$g'(\beta) = 1 - \frac{3}{\beta^2} + \frac{2}{\beta^3}$$
$$g'(\beta) = 0 \Rightarrow \beta^3 - 3\beta + 2 = 0$$
$$\Rightarrow (\beta - 1)(\beta^2 + \beta - 2) = 0$$
$$\Rightarrow (\beta - 1)(\beta + 2)(\beta - 1) = 0$$

So there are stationary points at (1,3) and  $(-2, -\frac{15}{4})$ 

$$g''(\beta) = \frac{6}{\beta^3} - \frac{6}{\beta^4}$$
, and  $g''(1) = 0$  and  $g''(-2) < 0$ 

[The fact that 1 is a repeated root of  $g'(\beta) = 0$  also means that g''(1) = 0] So  $(-2, -\frac{15}{4})$  is a local maximum.

$$g^{\prime\prime\prime}(\beta) = -\frac{18}{\beta^4} + \frac{24}{\beta^5}$$
, and  $g^{\prime\prime\prime}(1) \neq 0$ 

So, as the 1st non-vanishing derivative (after the 1st one) is an odd one, (1,3) is a point of inflexion [a turning point of the gradient, where  $g''(\beta)$  changes sign].

As 
$$\beta \to 0^+$$
,  $g(\beta) \to -\infty$ , and as  $\beta \to 0^-$ ,  $g(\beta) \to -\infty$  also.  
 $\left[-\frac{1}{\beta^2}\right]$  is the critical term, as for  $f(\beta)$ 

Also, as  $\beta \to \infty$ ,  $g(\beta) \to \beta^+$ , whilst as  $\beta \to -\infty$ ,  $g(\beta) \to \beta^-$ 



(ii) 
$$u + v + \frac{1}{uv} = -\alpha + \frac{1}{\beta}$$
  
$$\frac{1}{u} + \frac{1}{v} + uv = \frac{v+u}{uv} + uv = \frac{-\alpha}{\beta} + \beta$$

(iii) 
$$u + v + \frac{1}{uv} = -1 \Rightarrow -\alpha + \frac{1}{\beta} = -1 \Rightarrow \alpha = \frac{1}{\beta} + 1$$

[We may be able to use the fact that  $f(\beta) \le -1$  for  $\beta < 0$ ; so we need to eliminate  $\alpha$ .]

and 
$$\frac{1}{u} + \frac{1}{v} + uv = \frac{-\alpha}{\beta} + \beta = -\frac{1}{\beta}\left(\frac{1}{\beta} + 1\right) + \beta = f(\beta)$$

Then, from the sketch in (i), if  $\beta < 0$ ,  $\frac{1}{u} + \frac{1}{v} + uv \le -1$ 

Real roots of quadratic  $\Rightarrow \alpha^2 - 4\beta \ge 0 \Leftrightarrow \left(\frac{1}{\beta} + 1\right)^2 - 4\beta \ge 0$  (1) If  $\beta > 0$ , then (1)  $\Leftrightarrow (1 + \beta)^2 - 4\beta^3 \ge 0$   $\Leftrightarrow 1 + 2\beta + \beta^2 - 4\beta^3 \ge 0 \ (2)$ [Note: f(1) = -1, so  $\beta = 1$  is likely to be a critical value.] As the LHS = 0 when  $\beta = 1$ ,  $(2) \Leftrightarrow (\beta - 1)(-4\beta^2 - 3\beta - 1) \ge 0$  $\Leftrightarrow (\beta - 1)(4\beta^2 + 3\beta + 1) \le 0 \ (3)$ Then, as  $4\beta^2 + 3\beta + 1 = 4(\beta + \frac{3}{2})^2 - \frac{9}{16} + 1 > 0$ , (3)  $\Leftrightarrow \beta \leq 1$ , so that  $f(\beta) \leq f(1) = -1$ Thus, for all possible values of  $\beta$ ,  $\frac{1}{u} + \frac{1}{v} + uv \leq -1$ , as required. (iv)  $u + v + \frac{1}{uv} = 3 \Rightarrow -\alpha + \frac{1}{\beta} = 3 \Rightarrow \alpha = \frac{1}{\beta} - 3$ and  $\frac{1}{u} + \frac{1}{v} + uv = \frac{-\alpha}{\beta} + \beta = -\frac{1}{\beta} \left( \frac{1}{\beta} - 3 \right) + \beta = g(\beta)$ Real roots of quadratic  $\Rightarrow \alpha^2 - 4\beta \ge 0 \Leftrightarrow \left(\frac{1}{\beta} - 3\right)^2 - 4\beta \ge 0$  $\Leftrightarrow (1 - 3\beta)^2 - 4\beta^3 \ge 0$  $\Leftrightarrow 4\beta^3 - 9\beta^2 + 6\beta - 1 \le 0 \ (4)$ As the LHS = 0 when  $\beta = 1$ ,  $(4) \Leftrightarrow (\beta - 1)(4\beta^2 - 5\beta + 1) \le 0$  $\Leftrightarrow (\beta - 1)(4\beta - 1)(\beta - 1) \le 0$  $\Leftrightarrow 4\beta - 1 \le 0$ ; ie  $\beta \le \frac{1}{4}$ , or  $\beta = 1$ So the greatest value of  $\frac{1}{u} + \frac{1}{v} + uv$  is g(1) = 3.