STEP 2018, P2, Q2 - Solution (2 pages; 29/10/18)

$f^{\prime \prime}(x)<0$ for $a<x<b \Leftrightarrow f^{\prime}(x)$ is decreasing for $a<x<b$, as in the diagram
(i) We can try splitting up $\frac{u+v+w}{3}$ as $\left(\frac{u}{3}+\frac{v}{6}\right)+\left(\frac{v}{6}+\frac{w}{3}\right)$, initially.
[This involves only a minimal change (anything more complicated couldn't be relied on to work), and produces two terms of the same form.]

We can then write this as $\frac{1}{2}\left(\frac{2}{3} u+\frac{1}{3} v\right)+\frac{1}{2}\left(\frac{1}{3} v+\frac{2}{3} w\right)$, enabling the inequality in the question to be applied, to give
$f\left(\frac{u+v+w}{3}\right) \geq \frac{1}{2} f\left(\frac{2}{3} u+\frac{1}{3} v\right)+\frac{1}{2} f\left(\frac{1}{3} v+\frac{2}{3} w\right)$
$\geq \frac{1}{2}\left\{\frac{2}{3} f(u)+\frac{1}{3} f(v)\right\}+\frac{1}{2}\left\{\frac{1}{3} f(v)+\frac{2}{3} f(w)\right\}$
$=\frac{1}{3}\{f(u)+f(v)+f(w)\}$, as required.
(ii) Let $f(x)=\sin x$, with $a=0, b=\pi$; noting that $f(x)$ is concave.

Then, from (i),
$\frac{1}{3}\{\sin A+\sin B+\sin C\} \leq \sin \left(\frac{A+B+C}{3}\right)=\sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}$
so that $\sin A+\sin B+\sin C \leq \frac{3 \sqrt{3}}{2}$, as required.
(iii) $\sin A \times \sin B \times \sin C \leq \frac{3 \sqrt{3}}{8}$
$\Leftrightarrow \ln (\sin A)+\ln (\sin B)+\ln (\sin C) \leq \ln \left(\frac{3 \sqrt{3}}{8}\right)$
(as $y=\ln x$ is an increasing function) [ie $a \leq b \Leftrightarrow \ln a \leq \ln b]$
Now setting $f(x)=\ln (\sin x)$, with $0<x<\pi$,
$f^{\prime}(x)=\frac{1}{\sin x} \cos x$
and $f^{\prime \prime}(x)=\frac{-\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x}=-\operatorname{cosec}^{2} x<0$,
so that $f(x)$ is concave.
Then, from (i),
$\ln (\sin A)+\ln (\sin B)+\ln (\sin C) \leq 3 \ln \left(\sin \left(\frac{A+B+C}{3}\right)\right)$
$=3 \ln \left(\sin \left(\frac{\pi}{3}\right)\right)=3 \ln \left(\frac{\sqrt{3}}{2}\right)=\ln \left(\frac{\sqrt{3}}{2}\right)^{3}=\ln \left(\frac{3 \sqrt{3}}{8}\right)$,
establishing the equivalent result (*).

