STEP 2017, P1, Q1 - Solution (2 pages; 4/10/19)
(i) Let $u=x \sin x+\cos x$,
so that $d u=(\sin x+x \cos x-\sin x) d x=x \cos x d x$
Then $\int \frac{x}{x \tan x+1} d x=\int \frac{x \cos x}{x \sin x+\cos x} d x$
$=\int \frac{1}{u} d u=\ln |x \sin x+\cos x|+C$
$I=\int \frac{x}{x \cot x-1} d x=\int \frac{x \sin x}{x \cos x-\sin x} d x$
$\frac{d}{d x}(x \cos x-\sin x)=\cos x-x \sin x-\cos x=-x \sin x$
So let $u=x \cos x-\sin x$,
so that $I=-\int \frac{1}{u} d u=-\ln |x \cos x-\sin x|+D$
(ii) [If necessary, try the simplest possible substitution. See comments later on.]

$$
\begin{aligned}
& \frac{d}{d x}\left(x \sec ^{2} x-\tan x\right)=\sec ^{2} x+x \frac{d}{d x}(\cos x)^{-2}-\sec ^{2} x \\
& =-2 x(\cos x)^{-3}(-\sin x)=2 x \tan x \sec ^{2} x
\end{aligned}
$$

So let $u=x \sec ^{2} x-\tan x$,
so that $I=\frac{1}{2} \int \frac{1}{u} d u=\frac{1}{2} \ln \left|x \sec ^{2} x-\tan x\right|+E$
[As the first part of (ii) turned out to be straightforward, it is likely that it is needed in some way for the 2nd part of (ii).]
[The simplest approach for the 2nd part of (ii) is to convert it to the form $\int \frac{f \prime(x)}{(f(x))^{2}} d x$.]

As $\frac{x \sin x \cos x}{(x-\sin x \cos x)^{2}}=\frac{x \tan x \sec ^{2} x}{\left(x \sec ^{2} x-\tan x\right)^{2}}$,
let $u=x \sec ^{2} x-\tan x$ again,
so that the integral $=\frac{1}{2} \int \frac{2 x \tan x \sec ^{2} x}{\left(x \sec ^{2} x-\tan x\right)^{2}} d x=\frac{1}{2} \int \frac{1}{u^{2}} d u$
$=-\frac{1}{u}+F=-\frac{1}{2\left(x \sec ^{2} x-\tan x\right)}+F$

