STEP 2017, P1, Q10 - Solution (4 pages; 10/10/19)
(i) The diagram shows the collision between $P$ and $P_{1}$, where $v$ is defined to be the velocity of $P$ after the collision.


By conservation of momentum, $m u=m v+\lambda m u_{1}$,
so that $u=v+\lambda u_{1}$
By Newton's law of restitution (aka law of impact),
$u_{1}-v=e u$
Then, adding (1) \& (2), $u+e u=u_{1}(\lambda+1)$,
so that $u_{1}=\frac{1+e}{1+\lambda} u$, as required.

As the ratio of the masses is the same for each collision,
$u_{2}=\frac{1+e}{1+\lambda} u_{1}=\left(\frac{1+e}{1+\lambda}\right)^{2} u$ etc, so that $u_{n}=\left(\frac{1+e}{1+\lambda}\right)^{n} u$

Also, from (2), $v=u_{1}-e u=\left(\frac{1+e}{1+\lambda}-e\right) u=\frac{1-e \lambda}{1+\lambda} u$
and, as the relation between $v_{n}$ and $u_{n}$ is the same as that between $v$ and $u$ (see diagram below),

(ii) Only 2 collisions $\Leftarrow v_{n}<v_{n+1}$
$\Leftarrow \frac{(1-e \lambda)(1+e)^{n}}{(1+\lambda)^{n+1}} u<\frac{(1-e \lambda)(1+e)^{n+1}}{(1+\lambda)^{n+2}} u$
$\Leftarrow 1<\frac{1+e}{1+\lambda}$, provided that $1-e \lambda>0$ (noting that $\lambda>0$
(otherwise some masses would be negative), so that $1+\lambda>0$, and also $1+e>0$ )
$\Leftarrow 1+\lambda<1+e \Leftarrow \lambda<e$
Then if $\lambda<e, \lambda<1$ (as $e<1$ ), so that $1-e \lambda>0$.
Thus $\lambda<e \Rightarrow$ only 2 collisions
[Note that we cannot write $\Leftrightarrow$ instead of $\Leftarrow$ throughout, because the condition $1-e \lambda>0$ depends on $\lambda<e$.]
[It would be simpler to just say that $e>\lambda \Rightarrow \frac{1+e}{1+\lambda}>1$
$\Rightarrow v_{n+1}>v_{n}$, as in the official mark scheme, but the above reasoning is hopefully instructive in respect of the use of the $\Leftarrow$ symbol.]
(iii) $e=\lambda \Rightarrow u_{n}=\left(\frac{1+e}{1+\lambda}\right)^{n} u=u$
and $v_{n}=\frac{(1-e \lambda)(1+e)^{n}}{(1+\lambda)^{n+1}} u=(1-e) u$
So each collision is identical, with each moving particle approaching with speed $u$ and leaving with speed $(1-e) u$.

The original KE of $P$ is $\frac{1}{2} m u^{2}$
After $P_{n}$ has been struck, $P, P_{1} \ldots P_{n-1}$ are moving at speed $(1-e) u$, whilst $P_{n}$ has speed $u$.

So the total KE at this point is:

$$
\begin{aligned}
& \frac{1}{2} m(1-e)^{2} u^{2}\left(1+\lambda+\lambda^{2}+\cdots+\lambda^{n-1}\right)+\frac{1}{2} m u^{2} \lambda^{n} \\
& =\frac{1}{2} m(1-e)^{2} u^{2} \frac{1-e^{n}}{1-e}+\frac{1}{2} m u^{2} e^{n} \\
& =\frac{1}{2} m u^{2}\left((1-e)\left(1-e^{n}\right)+e^{n}\right) \\
& =\frac{1}{2} m u^{2}\left(1-e+e^{n+1}\right)
\end{aligned}
$$

and the fraction of the initial KE lost is
$1-\frac{\frac{1}{2} m u^{2}\left(1-e+e^{n+1}\right)}{\frac{1}{2} m u^{2}}=1-\left(1-e+e^{n+1}\right)=e-e^{n+1}$,
which approaches $e$ as $n$ increases.
[The official mark scheme doesn't seem to allow for $P_{n}$ having speed u.]
(iv) $\lambda e=1 \Rightarrow u_{n}=\left(\frac{1+e}{1+\lambda}\right)^{n} u=\left(\frac{1+e}{1+1 / e}\right)^{n} u=\left(\frac{e(1+e)}{e+1}\right)^{n} u=e^{n} u$ and $v_{n}=\frac{(1-e \lambda)(1+e)^{n}}{(1+\lambda)^{n+1}} u=0\left(\right.$ and $\left.v=\frac{1-e \lambda}{1+\lambda} u=0\right)$

So each particle acquires a speed of $e^{n} u$ after its first collision, and stops after its second collision.

After $P_{n}$ has been struck, it is the only particle moving, and so the fraction of the initial KE lost is
$1-\frac{\frac{1}{2} m\left(e^{n}\right)^{2} u^{2}}{\frac{1}{2} m u^{2}}=1-e^{2 n}$, which tends to 1 as $n \rightarrow \infty$
ie all KE is eventually lost.

