(i) $\frac{d}{d x}\left(\frac{P(x) e^{x}}{Q(X)}\right)=\frac{x^{3}-2}{(x+1)^{2}} e^{x}$
$\Rightarrow \frac{Q(x)\left[P^{\prime}(x) e^{x}+P(x) e^{x}\right]-P(x) e^{x} Q^{\prime}(x)}{[Q(x)]^{2}}=\frac{x^{3}-2}{(x+1)^{2}} e^{x}$
$\Rightarrow \frac{Q(x)\left[P^{\prime}(x)+P(x)\right]-P(x) Q^{\prime}(x)}{[Q(x)]^{2}}=\frac{x^{3}-2}{(x+1)^{2}}$
RHS is undefined when $x=-1$; hence $Q(x)$ has factor of $x-1$; otherwise $Q(-1) \neq 0$, and LHS wouldn't be undefined.

Let degrees of $P(x)$ and $Q(x)$ be p and q.
Then degree of LHS of (A) is
$\max \{q+p-1, q+p, p+q-1\}-2 q$
and degree of RHS is $3-2$
So $p+q-2 q=1 ; p=q+1$, as required.

When $Q(x)=x+1$, let $P(x)=a x^{2}+b x+c$.
Then (A) \Rightarrow
$(x+1)\left(2 a x+b+a x^{2}+b x+c\right)-\left(a x^{2}+b x+c\right)=x^{3}-2$
Equating coefficients of $x^{0}: b=-2$
Equating coefficients of $x^{1}: b+2 a+c=0 ; 2 a+c=2$
Equating coefficients of $x^{2}: 2 a+b=0 ; a=1 ; c=0$
[Equating coefficients of $x^{3}: a=1$]
So $P(x)=x^{2}-2 x$
(ii) $\frac{d}{d x}\left(\frac{P(x) e^{x}}{Q(X)}\right)=\frac{1}{x+1} e^{x}$
$\Rightarrow \frac{Q(x)\left[P^{\prime}(x) e^{x}+P(x) e^{x}\right]-P(x) e^{x} Q^{\prime}(x)}{[Q(x)]^{2}}=\frac{1}{x+1} e^{x}$
$\Rightarrow \frac{Q(x)\left[P^{\prime}(x)+P(x)\right]-P(x) Q^{\prime}(x)}{[Q(x)]^{2}}=\frac{1}{x+1}$ (B)

Then $Q(x)$ has a factor of $x+1$ (in order for both sides of (B) to be undefined when $x=-1$).

Suppose that $Q(x)=(x+1) R(x)$
Then (B) \Rightarrow
$(x+1) R(x)\left[P^{\prime}(x)+P(x)\right]-P(x)\left[R(x)+(x+1) R^{\prime}(x)\right]$
$=(x+1)[R(x)]^{2}$
And $x=-1 \Rightarrow-P(-1) R(-1)=0$, so that $R(x)$ has a factor of $x+1$, as $P(x)$ and $Q(x)$ have no common factors; in particular $x+1$
[So $Q(x)=(x+1)^{2} S(x)$, and we might be able to show that this continues indefinitely; so instead:]

Let $Q(x)=(x+1)^{n} T(x)$, where $T(x)$ doesn't have a factor of $x+1$.

Then (B) \Rightarrow

$$
\begin{aligned}
& (x+1)^{n} T(x)\left[P^{\prime}(x)+P(x)\right]-P(x)\left[n(x+1)^{n-1} T(x)+\right. \\
& \left.(x+1)^{n} T^{\prime}(x)\right] \\
& =(x+1)^{2 n-1}[T(x)]^{2}
\end{aligned}
$$

$\Rightarrow(x+1)\left[P^{\prime}(x)+P(x)\right]-P(x)\left[n T(x)+(x+1) T^{\prime}(x)\right]$
$=(x+1)^{n}[T(x)]^{2}$
And $x=-1 \Rightarrow-P(-1) n T(-1)=0$, which contradicts the assumption that $T(x)$ doesn't have a factor of $x+1$.

Thus the expression $\frac{P(x) e^{x}}{Q(x)}$ for the integral isn't possible.

