STEP 2016, Paper 3, Q2 – Solution (2 pages; 6/5/19)

(i) Gradient of PQ =
$$\frac{2ap-2aq}{ap^2-aq^2} = \frac{2(p-q)}{p^2-q^2} = \frac{2}{p+q}$$

Also, tangent to curve at $(at^2, 2at)$ has gradient

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2a}{2at} = \frac{1}{t}$$
, so that gradient of normal at Q is $-q$

Thus $\frac{2}{p+q} = -q$ and so $2 = -qp - q^2$ and $q^2 + qp + 2 = 0$, as required.

(ii) By symmetry, the point can be expected to lie on the *x*-axis. Equation of QR is $\frac{y-2aq}{x-aq^2} = \frac{2ar-2aq}{ar^2-aq^2} = \frac{2}{r+q}$ (A) When y = 0, $-aq(r+q) = x - aq^2$, so that x = -aqrAlso, from (i), $q^2 + qp + 2 = 0$ and similarly for *r*; ie *q* and *r* are solutions of $x^2 + px + 2 = 0$, so that qr = 2, and hence the required point is (-2a, 0).

(iii) By symmetry, the line can be expected to be parallel to the *y*-axis.

OP has equation $y = x\left(\frac{2ap}{ap^2}\right) = \frac{2x}{p}$ (B)

Using (A) to eliminate *y* gives

$$\frac{2x}{p} = 2aq + \frac{2(x-aq^2)}{r+q}$$

$$\Rightarrow x(r+q) = aqp(r+q) + (x-aq^2)p$$

$$\Rightarrow x(r+q-p) = apqr$$

$$\Rightarrow x = \frac{apqr}{r+q-p}$$

Then, as q and r are solutions of $x^2 + px + 2 = 0$,

qr = 2 and r + q = -p, so that $x = \frac{2ap}{-2p} = -a$

ie the required line is x = -a

From (B), T is
$$(-a, -\frac{2a}{p})$$
, so that the distance from the *x*-axis to T is $\frac{2a}{p}$

To show that $\frac{2a}{p} < \frac{a}{\sqrt{2}}$; ie that $p > 2\sqrt{2}$ (assuming p > 0; if p < 0, then $\frac{2a}{p} < \frac{a}{\sqrt{2}}$ automatically, as a > 0:

In order for Q and R to be distinct, the discriminant of

 $x^2 + px + 2 = 0$ must be positive; so that $p^2 - 8 > 0$; ie $p > 2\sqrt{2}$, as required.