STEP 2016, Paper 2, Q13 – Solution (2 pages; 8/6/18)

[3 'show that' results!]

(i) If
$$X \sim B(16, \frac{1}{2})$$
 and $Y \sim N(8, 4)$,
then $P(X = 8) \approx P(7.5 < Y < 8.5)$
 $= P(\frac{7.5-8}{2} < Z < \frac{8.5-8}{2}) = P(-\frac{1}{4} < Z < \frac{1}{4})$
 $= \int_{-\frac{1}{4}}^{\frac{1}{4}} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx \approx (\frac{1}{\sqrt{2\pi}})(\frac{1}{2}) \left(e^{-\frac{1}{2}(0)^2}\right) = \frac{1}{2\sqrt{2\pi}}$

[The approximation here seems quite crude - although it's the midpoint rule with one strip.]

(ii) If
$$X \sim B(2n, \frac{1}{2})$$
 and $Y \sim N(n, \frac{n}{2})$,
then $P(X = n) \approx P(n - \frac{1}{2} < Y < n + \frac{1}{2})$
 $= P(\frac{-\frac{1}{2}}{\sqrt{\frac{n}{2}}} < Y < \frac{\frac{1}{2}}{\sqrt{\frac{n}{2}}}) = \int_{-a}^{a} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^{2}} dx$, where $a = \frac{\frac{1}{2}}{\sqrt{\frac{n}{2}}} = \frac{1}{\sqrt{2n}}$
 $\approx (\frac{1}{\sqrt{2\pi}})(2a) (e^{-\frac{1}{2}(0)^{2}}) = (\frac{1}{\sqrt{2\pi}}) \sqrt{\frac{2}{n}} = \frac{1}{\sqrt{n\pi}}$
Also $P(X = n) = \frac{(2n)!}{n!n!} (\frac{1}{2})^{2n}$
So $\frac{(2n)!}{(n!)^{2}} (\frac{1}{2})^{2n} \approx \frac{1}{\sqrt{n\pi}}$, and hence $(2n)! \approx \frac{2^{2n}(n!)^{2}}{\sqrt{n\pi}}$, as required.

(iii) For large
$$\lambda$$
, $Po(\lambda) \sim approx$. $N(\lambda, \lambda)$

so that, if $X \sim Po(\lambda)$ and $Y \sim N(\lambda, \lambda)$, for integer λ :

$$P(X = \lambda) \approx P\left(\lambda - \frac{1}{2} < Y < \lambda + \frac{1}{2}\right) = P\left(\frac{-\frac{1}{2}}{\sqrt{\lambda}} < Z < \frac{\frac{1}{2}}{\sqrt{\lambda}}\right)$$

$$\approx 2\left(\frac{\frac{1}{2}}{\sqrt{\lambda}}\right)\left(\frac{1}{\sqrt{2\pi}}\right), \text{ as before}$$
$$= \frac{1}{\sqrt{2\pi\lambda}}$$

Also
$$P(X = \lambda) = \frac{e^{-\lambda}\lambda^{\lambda}}{\lambda!}$$
,

so that $\frac{e^{-\lambda}\lambda^{\lambda}}{\lambda!} = \frac{1}{\sqrt{2\pi\lambda}}$,

Writing $n = \lambda$ then gives $n! \approx e^{-n} n^n \sqrt{2\pi n}$, as required.