STEP 2016, Paper 2, Q13 - Solution (2 pages; 8/6/18)
[3 'show that' results!]
(i) If $X \sim B\left(16, \frac{1}{2}\right)$ and $Y \sim N(8,4)$,
then $P(X=8) \approx P(7.5<Y<8.5)$
$=P\left(\frac{7.5-8}{2}<Z<\frac{8.5-8}{2}\right)=P\left(-\frac{1}{4}<Z<\frac{1}{4}\right)$
$=\int_{-\frac{1}{4}}^{\frac{1}{4}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} d x \approx\left(\frac{1}{\sqrt{2 \pi}}\right)\left(\frac{1}{2}\right)\left(e^{-\frac{1}{2}(0)^{2}}\right)=\frac{1}{2 \sqrt{2 \pi}}$
[The approximation here seems quite crude - although it's the midpoint rule with one strip.]
(ii) If $X \sim B\left(2 n, \frac{1}{2}\right)$ and $Y \sim N\left(n, \frac{n}{2}\right)$, then $P(X=n) \approx P\left(n-\frac{1}{2}<Y<n+\frac{1}{2}\right)$
$=P\left(\frac{-\frac{1}{2}}{\sqrt{\frac{n}{2}}}<Y<\frac{\frac{1}{2}}{\sqrt{\frac{n}{2}}}\right)=\int_{-a}^{a} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} d x$, where $a=\frac{\frac{1}{2}}{\sqrt{\frac{n}{2}}}=\frac{1}{\sqrt{2 n}}$
$\approx\left(\frac{1}{\sqrt{2 \pi}}\right)(2 a)\left(e^{-\frac{1}{2}(0)^{2}}\right)=\left(\frac{1}{\sqrt{2 \pi}}\right) \sqrt{\frac{2}{n}}=\frac{1}{\sqrt{n \pi}}$
Also $P(X=n)=\frac{(2 n)!}{n!n!}\left(\frac{1}{2}\right)^{2 n}$
So $\frac{(2 n)!}{(n!)^{2}}\left(\frac{1}{2}\right)^{2 n} \approx \frac{1}{\sqrt{n \pi}}$, and hence $(2 n)!\approx \frac{2^{2 n}(n!)^{2}}{\sqrt{n \pi}}$, as required.
(iii) For large $\lambda, \operatorname{Po}(\lambda) \sim$ approx. $N(\lambda, \lambda)$
so that, if $X \sim P o(\lambda)$ and $Y \sim N(\lambda, \lambda)$, for integer λ :

$$
P(X=\lambda) \approx P\left(\lambda-\frac{1}{2}<Y<\lambda+\frac{1}{2}\right)=P\left(-\frac{1}{2} \frac{2}{\sqrt{\lambda}}<Z<\frac{\frac{1}{2}}{\sqrt{\lambda}}\right)
$$

$\approx 2\left(\frac{\frac{1}{2}}{\sqrt{\lambda}}\right)\left(\frac{1}{\sqrt{2 \pi}}\right)$, as before
$=\frac{1}{\sqrt{2 \pi \lambda}}$
Also $P(X=\lambda)=\frac{e^{-\lambda} \lambda^{\lambda}}{\lambda!}$,
so that $\frac{e^{-\lambda} \lambda^{\lambda}}{\lambda!}=\frac{1}{\sqrt{2 \pi \lambda}}$,
Writing $n=\lambda$ then gives $n!\approx e^{-n} n^{n} \sqrt{2 \pi n}$, as required.

