STEP 2016, Paper 1, Q12 - Solution (1 page; 28/5/18)
(i) $P(A=0) P(B>0)+P(A=1) P(B>1)+P(A=2) P(B>2)$
$=\left(\frac{1}{2}\right)^{2}\left(1-\left(\frac{1}{2}\right)^{3}\right)+2\left(\frac{1}{2}\right)^{2}\left(1-\left(\frac{1}{2}\right)^{3}-3\left(\frac{1}{2}\right)^{3}\right)+\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{3}$
$=\frac{1}{4}\left\{\frac{7}{8}+\frac{8}{8}+\frac{1}{8}\right\}=\frac{1}{2}$
(ii) $P(A=0) P(B>0)+P(A=1) P(B>1)+P(A=2) P(B>2)$
$+P(A=3) P(B>3)$
$=\left(\frac{1}{2}\right)^{3}\left(1-\left(\frac{1}{2}\right)^{4}\right)+3\left(\frac{1}{2}\right)^{3}\left(1-\left(\frac{1}{2}\right)^{4}-4\left(\frac{1}{2}\right)^{4}\right)$
$+3\left(\frac{1}{2}\right)^{3}\left(4\left(\frac{1}{2}\right)^{4}+\left(\frac{1}{2}\right)^{4}\right)+\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{4}$
$=\frac{1}{8}\left\{\frac{15}{16}+\frac{33}{16}+\frac{15}{16}+\frac{1}{16}\right\}=\frac{1}{2}$
(iii) P (B gets more heads)
$=P(B$ has the same number of heads after n tosses each $)$
$\times \mathrm{P}$ (B gets head on $\mathrm{n}+1$ th toss)
$+\mathrm{P}(\mathrm{B}$ has more heads after n tosses each $) \times 1$
$+P(B$ has fewer heads after n tosses each $) \times 0$
$=p_{1}\left(\frac{1}{2}\right)+p_{2}$
Now, after n tosses each, either B has more heads, or A has more (with the same probability, by symmetry), or they both have the same number;
so $p_{2}+p_{2}+p_{1}=1$, and hence $p_{1}\left(\frac{1}{2}\right)+p_{2}=\frac{1}{2}\left(p_{1}+2 p_{2}\right)=\frac{1}{2}$

