STEP 2015, Paper 2, Q10 Solution (3 pages; 21/5/18)

1st part

x is the x coordinate from 0 , with left to right being positive $\tan \theta=\frac{-x}{h} \Rightarrow \frac{d x}{d t}=-h \sec ^{2} \theta \frac{d \theta}{d t}$
Also, $\frac{d L}{d t}=-V$
and $L \cos \theta=h$,
so that (differentiating wrt L)
$\cos \theta+L(-\sin \theta) \frac{d \theta}{d L}=0$, and hence $\frac{d \theta}{d L}=\frac{\cot \theta}{L}$

Then (1) $\Rightarrow \frac{d x}{d t}=-h \sec ^{2} \theta \frac{d \theta}{d L} \frac{d L}{d t}=-h \sec ^{2} \theta\left(\frac{\cot \theta}{L}\right)(-V)$,
from (2) \& (3)
So $\frac{d x}{d t}=\frac{h V \sec ^{2} \theta \cot \theta}{h \sec \theta}$, as $L=h \sec \theta$ (from (2a))
$=V \operatorname{cosec} \theta$

2nd part

$\frac{d^{2} x}{d t^{2}}=\frac{d}{d t}(V \operatorname{cosec} \theta)=V \frac{d}{d t}\left((\sin \theta)^{-1}\right)$
$=V\left(-(\sin \theta)^{-2} \cos \theta\right) \frac{d \theta}{d t}$
$=-V\left(\frac{\cos \theta}{\sin ^{2} \theta}\right) \frac{d \theta}{d L} \frac{d L}{d t}$
$=-V\left(\frac{\cos \theta}{\sin ^{2} \theta}\right)\left(\frac{\cot \theta}{L}\right)(-V)$, from (2) \& (3) again
$=\frac{V^{2} \cos ^{2} \theta}{L \sin ^{3} \theta}$
$=\frac{V^{2} \cos ^{3} \theta}{h \sin ^{3} \theta}$, as $L \cos \theta=h$, from (2a)
$=\frac{V^{2} \cot ^{3} \theta}{h}$

3rd part

By N2L, $T \sin \theta=m \frac{d^{2} x}{d t^{2}}=m \frac{V^{2} \cot ^{3} \theta}{h}$,
so that $T=\frac{m V^{2} \cot ^{3} \theta}{h \sin \theta}$

4th part

Particle will leave the floor when $R=0$
$R+T \cos \theta=m g$
Then $R=0 \Rightarrow m g-T \cos \theta=0$
$\Rightarrow m g-\frac{m V^{2} \cot ^{3} \theta \cos \theta}{h \sin \theta}=0$
$\Rightarrow g=\frac{V^{2} \cot ^{4} \theta}{h}$
$\Rightarrow \tan ^{4} \theta=\frac{V^{2}}{g h}$ QED

