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() y=e¢x—-1)(x-2) Bl Correct factorisation of quadratic term (or formula, etc.)
(£,0)&(2,0) Bl Noted or shown on sketch
% =e" (2" —x-3) M1  Derivative attempted and equated to zero for TPs

=¢'2x-3)(x+ 1)
3, - e") & (-1,9 Al Al Noted or shown on sketch

(if y-coords. missing, allow one A1 for 2 correct x-coords.)

G1  Generally correct shape

G1  for (0, 2) noted or shown on sketch

__—

Gl  for negative-x-axis asymptote '
(penalise curves that clearly turn up away from axis

or that do not actually seem to approach it)

Give M1 for either 0, 1, 2 or 3 solutions OR clear indication they know these arise from where a
horizontal line meets the curve (e.g. by a line on their diagram) — implied by any correct answer(s)

Then y =k has NO solutions for k<—e¢'? Al
ONE solution for k=—¢' and k>9¢ ' Al Al
TWO solutions for —e¢'°<k<0 and k=9¢ ' Al Al
THREE solutions for 0< k<9 ' Al

FT from their y-coords.of the Max. &Min. points.

(i) Gl  Any curve clearly symmetric in y-axis
G1  Shape correct
Gl AMax.TPat(0,2) FT

Gl Min. TPsat (£ \/g’ _e'S) FT

Gl Zeroes at x=-_|-\/g,i\/§FT
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(i)

(i)

(iii)

M1

Al

M1

Al

M1
Al
Al
M1

Al
M1

M1
Al

M1

Al

M1

Al
M1

Al

Al

Al

Use of cos(4 — B) formula with 4 = 60°, B=45° OR A =45°, B=30°
or 2 cos® 15° — 1 etc.

\/§+1
22

Similar method OR sin = ++/1—cos” (as 15 is acute, no requirement to justify +vesq.rt.)
V3-1
22

Exact trig.values used (visibly) to gain cos 15° = legitimately (Given Answer)

sin 15° =

(however legitimately obtained)

Use of cos(4 + B) formula and double-angle formulae OR de Moivre’sThm. (etc.)

cos3a = 4cos’a — 3cosa

Justifying/noting that x = cosa is thus a root of 4x’ —3x —cos3a =0

For serious attempt to factorise 4(x3 -c )— 3(x —c¢) as linear x quadratic factors
or via Vieta’s Theorem (roots/coefficients)

(x— c){4()c2 +ex+c’ )— 3}

Solving 4x* +4cx + (4c2 —~ 3) = 0 FT their quadratic factor

Remaining roots are x = %(— ctqlc’ - i4c2 -3 ))

Use of s=+/1—c? to simplify sq.rt. term

x= %(—cosai\/gsina)

FLARE

1Yy 1 V2
ALy 4L ¥2
(2yj (2yj 2

cos3a = 72 = cos 45°

=a=15°
L= L 3sina), 4 3sina) with thei
Ey—COS(Z, 7—COSO{+ smaj, ;\—Cosa — SIno | wi C1r a

V3+1
V2
V3-1

\/gsinISO —cosl5°= ——

V2
—\/gsinIS" —cosl5°= —\/5

y=2cos 15°=
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C 7(b+a) P Bl For correct lengths in smallerA
li(b ) M1 By similar As (OR trig.ORcoord.geom.)
20—d 1(h— _
b S(b+a) b+a
b a 0 M1  soaguard at a corner can see 2(b + PQ)
2
Al = 4b (might be given as all but 4ba orasa
b+a b+a
fraction of the perimeter) @
0 P Lengths Saand 4 (b—a)in smaller A
[}
M1 By similar As (OR trig.ORcoord.geom.)
3b  5a _ bb-a)

=
o

>

H

= = PQ
PO L(b-a) 2a
A4zzﬁiii M1

so a guard at a midpoint can see b + 2PQ

2
b(4a - b
Al = — (might be given as all but bda-b) orasa
a

fraction of the perimeter) @

Lengths aand §(b—a)in smaller A

P M1 By similar As (OR trig. OR coord.geom.)
1
/ AL PQ _ ) a N PQ _ ba
b 1(b-a) b-a
L e IR I 9 wm so a guard at a midpoint can see 4b —2PQ
Al _ 2b@b=3a) (might be given as all but 2ba orasa
b-a b—-a
fraction of the perimeter) @

Bl Recognition that b =3a is the case when guard at M / C equally preferable

(P at corner in the two M cases)

4> b b’
b+a a a(b+a)
Al Correct conclusion: Guard stands at C for < 3a and at M for b> 3a
4b* 2b(2b-3a) __ 2ba (a—b)
b+a b—a (b+a)b—a)

Al Correct conclusion: Guard stands at C for < 3a and at M for b> 3a

M1A1 Relevant algebra for comparison of one case (3a—b)

M1A1 Relevant algebra

Opverall, I am anticipating that most attempts will do the Corner scenario and one of the Middle scenarios. This
will allow for a maximum of 12 =5 (for the Corner work) + 4 (for the Middle work) + 3 (for the comparison).
In this circumstance, it won’t generally be suitable to give the B1 for the 5= 3a observation.
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M1

Al
M1

Al
AlAl

M1Al

M1Al

When P is at (x, 4 x?) ... and makes an angle of 6 with the positive x-axis

.. the lower end, O, is at (x—bcos 0, Lx* —bsin 6?)

dy
Also, y=1ix’=—==1x =tané
Y =73 i 2

—x=2tanf ie. P= (2 tan 0, tan249)
so thatQ = (2 tan@ — bcos @, tan’@ — bsin 6?) obtained legitimately (Given Answer)

When x=0, 2tana =bcosa =b = 2tana

coS o

sin o

Substg. into y-coordinate = y, = tan’a —2tana =—tan’ &

cosaox

M1Al

M1Al

Bl
AlAl

AlAl

Al

ALTERNATIVE

M1 Al
M1 Al
M1 Al
Al

Bl
Al Al

ALTERNATIVE Translate whole thing up by tan’« and calculate J(& x” +tan’ a)dx —A

Eqn. of line AP is y = xtana —tan’ «
Area between curve and line is I (&x2 - [x tan & — tan” a] )dx

Correct limits (0, 2tan a )

%XS —%xz tan o + x tan” a] (Any 2 correct terms; all 3)

= %tan3 a—2tan’ o +2tan’ (Any 2 correct terms; all 3 FT)

= 2tan’ a obtained legitimately (Given Answer)

for obtaining the “conversion factor” hcosa =2 tana or tan’a= Lbsina
for distances OB = BC (=3 bcosa) and so PC=04 = tan’ o

giving AOAB=ACPB

= Areais J‘%x2 dx

Correct limits (0, 2 tane ) used

Correct integration; correct Given Answer

bcosa

0

®
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(i)  MI1A1 o) = [“‘DXT
X

X
Al _ 2
X
M1 Differentiating by use of Quotient RuleOR taking logs.anddiffg. implicitly)
Bl for %( x): 2%.In2 seen at any stage
X X
Al dy _ x.2 .ln22 2
dx X
Al TP at (% , (e In 2)} (v-coordinate not required)
n
Bl Jusitfying that the TP is a minimum
y
A

Gl Generally correct \-shape
Gl Asymptotic to y-axis

and TP in FT correct position

O
(i) M1 Let u’ =1+x" —2xt
Al 2u du = — 2xdt
Bl t:(=1,1)>u: (|1 +x|,| 1 =x|) Correct limits seen at any stage
M1Al Full substn. attempt; correct  g(x) = -1 '[ 1.du
X
Al gx)= l(Jl + x| — |l - x|) [n. may be done directly, but be strict on the limits
X
_2 x<-1 y
x A
oa0-] 2 1<xsi AR
2
— x>1
x 0
(Must have completely correct three intervals: x<—-1, —1<x <1, x> 1)
M1 Graph split into two or three regions
Al Al Reciprocal graphs on LHS & RHS (must be asymptotic to x-axis)

(Allow even if they approach y-axis also)
Al Horizontal line for middle segment
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Let P, O, R and S be the midpoints of sides (as shown)

Then
M1A1 p=ja+3b, q=ib+7a’,

r=1a'+ib’',s=1b'+1a
and
M1A1 PO=SR=1(a'-a)
Al OR=PS =1(b'—b)
Al so that POSR is a //gm.

(opposite sides // and equal)
M1 P_Q o @é = P—Q o @S" = %(a' - a)o %(b' - b) for use of the scalar product
Al = Z(a' eb’'—aeb’'—a'eb+ae b) Do not accept a'b’ etc.
M1 Use of perpendicularity of OA4, OB and OA’, OB’

= —Ll(aeb'+a'eb)

M1 ZAOB’= 60 = ZAOB = 180°- @; and cos(180°— @)= — cosd
Al =0 sinceaeb’=ab'cosf and a'eb =—-a'bcosb

and we are given thata =b and a’=b’
Al so that PORS is a rectangle (adjacent sides perpendicular)
B1 PQ* =SR* =PQePQ = +(a® +(a')* —2a ')
B1 OR® = PS* = L(p* +(b')> —2beb’)
M1 Sincea=b, a’=b" and aea’' = aa'cos(90° + 9), beab’= bb'cos(90° + 9)
Al it follows that PORS is a square (adjacent sides equal)
M1A1 Area PORS = L(a* +(a')* —2aa’ cos|90° + 6))
M1 ... which is maximal when cos[90° + 9] =-1

Al 1.e. when 6 =90°
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M1 f'(x) = 6ax — 18x>
= 6x(a — 3x)
AlAl =0 for x=0 and x={a
AlAl f0)=0 fla)=1d
Al (Min. TP) (Max. TP) since f(x) is a ‘negative’ cubic

(f(0) = 0 and the TPs may be shown on a sketch — award the marks here if necessary)

®

M1 Evaluating at the endpoints
AlAl f(—3)=5Ba+2); f(1)=3a-6
M1 LBa+2)21d & a’-3a-2<0
M1 < (a+1D*a-2)<0
Al and sincea >0, a<2
M1 La>3a-6 @ @ —27a+54>0
M1 < (@-3)a+6)=0
Al which holds for all a > 0
M1 $(Ba+2)23a-6 < 3a+2227a—-54

< 8Ba-7)<0
Al < as< i (which, actually, affects nothing, but working should appear)

Thus
3Ba+2) 0<ax<2
B1B1B1 M(a) = %a3 2<a<3 (Ignore ‘non-unique’ allocation of endpoints) @
3a—-6 a>3

(Do not award marks for correct answers unsupported or from incorrect working)
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(i) S=1 + 2 + 3 + . +n-2)+@m-1)+n
M1 S=n+(m-H)+m-2)+...+ 3 + 2 +1 Method
M1 2S=nx(n+1) Adding
Al S=1n(n+1) obtained legitimately (Given Answer)

(Allow alternatives using induction or the Method of Differences, for instance, but NOT by stating
that it is an AP and just quoting a formula; ditto A-number formula)

®

(ii) (N—m)* +m" (k odd)
k k k-1 k 2 a7k-2 k k-1 k k
M1A1l =N"—| mN"~" 4| |m"N" " "—..+ m - N-m +m
1 2 k-1
El which is clearly divisible by N (since each term has a factor of )

(Allow alternatives using induction, for instance)

LetS=1"+28+ .. +n* an odd no. of terms
M1 =0+ 15+ 2k .+t an even no. of terms
M1 = |n—0)* +0* [+ [(n=1)f +1* [+ .+ [En+ D)+ (Gn—1)
(no need to demonstrate final pairing but must explain fully the pairing up or the single extra n* term)
El and, by (ii), each term is divisible by #.
For S=1"+2"+ . +x* an even no. of terms
M1 =0"+ 15+ 2k .+t an odd no. of terms
M1 = (-0t + 0 [+ [ =1)F + ¥ ]+ [+ )+ A=)+ L)

(no need to demonstrate final pairing but must explain the pairing and note the separate, single term)

and, by (ii), each paired term is divisible by n

El and the final single term is divisible by 1 n = required result
M1 By the above result ... for n even, so that (n + 1) is odd

Al m+ D 1F+25+ L +nf +m+ 1)

E1l n+DIS+m+1)" = 0+

M1 By the above result ... for n odd, so that (n + 1) is even

Al L+ )| 15 +25+ o+ + i+ 1)

El T+ |S+(n+ ) = T (n+1)|S (as £ (n+ 1)is an integer)
El Since hef(n, n+1)=1 = hef({n,n+ 1) =1 for n even

El and hcf(n, & (n+ 1)) =1 for n odd

So it follows that L n(n+1)|S for all positive integers n
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M1

Al

M1

Al

M1Al

Al

M1Al

Al

M1Al

M1Al

M1

Al
M1

Al

M1Al

Time taken to land (at the level of the projection) (from y = utsina— % g, y =0, 1% 0)

2usina o
t= (may be implicit)

g

Bullet fired at time t(O <t< %) lands at time

T, =t+2—usin(£—/ltj
g 3

d7, :1—%%5(1—/&) _ 1 k—cos(z—/llJ
dt g 3 k 3

=0 whenk = cos (%— ﬂtj

) ) 2u’sina cosa . { . :
Horizontal range is R =————————— (fromy = utsina— 1 g* with above time)
g
2u’

g

kN1—-k*> obtained legitimately (Given Answer)

=R, =

d’T 2%u . . .
d tzL == Au Sln(Z — /Uj < 0= maximum distance
g

OStél in k:cos(z—/lt) =
64 3

If k<4 then ddi < 0 throughout the gun’s firing ...
t

... and Ty, is a (strictly) decreasing function.
Then 7; max. occursat =0

. V2
lLe.a=—
3

2u 1 \/g uzx/g

g 2 2 2g

and R, =
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Bl

M1Al
El

El

Al

M1

Al

M1

El
El

M1

El
El

M1
Al

M1Al

M1

Al

Speed of rain relative to bus is vcos@ —u (or u —vcosé if negative)
When u =0, A oc hvcos@ + avsin@ (width of bus and time units may be included as factors)

When vcosé —u > 0, rain hitting top of bus is the same, and rain hits back of bus
as before, but with vcos@ — u instead of vcosé

When vcosé —u <0, rain hitting top of bus is the same, and rain hits front of bus
as before, but with u« — vcos@ instead of vcosé

Together, A oc h |vcos@ — u| + avsind Fully justified (Given Answer)

®

. 1 o
Journey time o« — so we need to minimise
u

J= avsm9+ h|vcos@—u|

(Ignore additional constant-of-proportionality factors)
u u

For vcos@ —u>0,

avsin@ hvcos@
+ —h

if w<vcos@, we minimise J =
u u

and this decreases as u increases
and this is done by choosing u as large as possible; i.e. u = w

For u—vcos@> 0,

avsin@ hvcos@ N

we minimise J = h

u u
and this decreases as u increases if a sin@> hcosé
so we again choose u as large as possible; i.e. u = w

[Note: minimisation may be justified by calculus in either case or both.]

If asin@< hcos@, then J increases with u when u exceeds vcos&
so we choose u = vcos@ in this case

® ©

If a sin@ = hcos@ then J is independent of u, so we may as well take u =w

avsin@ hvcos6@
+ +

Replacing 8 by 180°— 6 gives J = h

u u
Which always decreases as u increases, so take u = w again
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(l) Bl O0,: F=F,

A0, F=F, (Both, with reason)

(i) Bl Res®. ||plane (for C}): F+R=W,sina O,
Bl  Res®.Ll" plane (for C)): R +F =W, cosa @
Bl  Res®||plane (for (y): F,—R=W,sina ®
Bl  Res®.Ll" plane (for Cy): R,—F =W, cosa @

Max 4 marks to be given for four independent statements (though only 3 are required).
One or other of
Res®.||plane (for system) :  F, +F, = (W1 +W, )sina

Res®.1". plane (for system) : R, + R, = (W, + W, )cos

may also appear instead of one or more of the above.

(£ and F, may or may not appear in these statements as F, but should do so below)

M1Al Equating for sina : FrR_F-R using @ and @
1 2
M1A1l Re-arranging for F'in terms of R: F = LURE R
VVI - Wz
M1 Use of the Friction Law, F' < uR
Al MW, <u obtained legitimately (Given Answer)

Wl_Wz



M1A1l

M1Al

Al

M1Al

M1

Al

F+R
R +F

o il
W +W,

R +F

-2
W+ W,

R +H

(e.g) ©D+@ = tana =

Subst®. for R =

using R = [MJF

W+ W,

. . F
Subst®. for Ry (correct inequality) using Friction Law F, < R < R >—

=
e,
ﬂ + F'l
H
W +W.
Tidying-up algebra = —-~1 272
H
= tang < 2,

(1+/u1)(VV1 +W2)

H

obtained legitimately (Given Answer)
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] n 1 r 3 n—-r
Q) M1Al P(exactly » out of n need surgery) = [ J [Zj (Z] (A binomial prob. term; correct)
r
(i) M1 P(S=r)= ie‘88”x n Ly n_’Att t at f iate product t
=r)= —| | = empt at sum of appropriate product terms
= n! rl(n-r)! 4 P ppropriatep
B1B1A1l Limitsv' v’ All internal terms correct; allow "C, for the A mark
8 0 n r n—r
M1 ey 8 (—j (zj Factoring out these two terms
S (n-r)! 4

-8 o 8)1 3n—r

M1 e P

Attempting to deal with the powers of 3 and 4

rl = (n—-r)! N
2" x 3"
Al = — Correctly
L= (n—r)
e—8 % 2r 0 n—r
M1 = ' Z ()] Splitting off the extra powers of 2 ready to .
r! = -
et x2 & 6" ‘ o
M1 = — Z —— ... adjust the lower limit (i.e. using m=n—r)
r! o=tm!
-8 r -2 r
e x2 . e x2
Al =2 "= xe® ie ——
r! r!
Al ... which is Poisson with mean 2 (Give B1 for noting this without the working) @
@)y M1 PM=8|M+T=12) Identifying correct conditional probability outcome

e?x2? o e 2 x2*

| |
AlAl1Al - 8! - 4124 : One A mark for each correct term (& no extras for 3™ A mark)
e X
12!
27 x12! L .
AlAl = — Powers of e cancelled; factorials in correct part of the fraction —
4% x81x 4!

(unsimplified is okay at this stage)

495
Al -7
4096 @
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Reminder
A : the 1%6 arises on the n™ throw
B : at least one 5 arises before the 1%6
C : at least one 4 arises before the 1%6
D : exactly one 5 arises before the 1¥'6
E : exactly one 4 arises before the 1%6

()  M1AL PA)= ()" ()

(i) M1Al By symmetry (either a 5 or a 6 arises before the other), P(B) = 1

@iii) M1 The first 4s, 5s, 6s can arise in the orders 456, 465, 546, 564, 645, 654
Al = P(BNC) = 1(i.e. “by symmetry” but with three pairs)

(V) MIAIAL P(D)=(%)(%)+@(%)(%)(%ﬁ@(%)(%)2(%)+.-.

M1 for infinite series with 1%term v'; A1 for 2™ term v'; A1 for 3™ term and following pattern v’

M1 = (ﬁ){l + 2(%) + 3(%)2 + } For factorisation and an infinite series
M1 = (%)(1 - %)72 Use of the given series result
Al =1
(V) M1 P(DUE) =P(D) + P(E) — P(DNE) Stated or used
Bl P(E) = P(D) = answer to (iv) Stated or used anywhere

3 4
MIALAL RO = (XKD ] (OO 0T X+
M1 for infinite series with 1%term v'; A1 for 2™ term ¥'; A1 for 3™ term and following pattern v’

M1 = (ﬁ){l + 3(%)+ 6(%)2 + } For factorisation and an infinite series

M1 = (ﬁ)(l - %)_3 Use of the given series result
Al =P(DUE)=1-%t=2



Question 1

(i)

d
—(x — -1 Bl
dx(x In1+x)=1 1T

Forx >0, 2L <1 M1

1+x

Therefore %(x —In(1+x))>0forx>0 Al
fx=0x—In(1+x)=0
Therefore x — In(1 + x) is positive for all positive x. B1
Therefore % —In (1 + %) > 0 for all positive k.
So,

n 1 n Bl

> 2 n(1+7)
k=1 k=1 T
1
ln<1+E =1n( - )=1n(k+1)—1nk M1
So,
n 1 n M1
Zln(l +E) = Wk + D -Ink=In(+1) -1
k=1 k=1
Therefore,
o 1 Al
Z > In(n+ 1)
k=1
.o d 1
W2 ima =) =1-—— B1

dx 1—x

For0<x<l,i>1 M1
Therefore %(x +In(1—-x))<0for0<x<1. Al
fx=0x+In(1l—-x)=0
Therefore x + In(1 — x) is negative for 0 < x < 1. B1

1 1

Therefore = +1In (1 - ﬁ) < Oforallk > 1.
So,
n 1 n 1 B1
Q<) (1)
k=2 k=2 ;

1 k-1 M1 M1
—ln(l—k—2>——ln< 2 >——ln(k—1)+21nk—ln(k+1) A1
So,

c 1 M1 A1
z —ln(l _F> =In2+Inn—-In(n+1)
k=2
Asn > oo, Inn—In(n+1) -0 B1
Therefore,

Al

1 1 w1
2ﬁzﬁ+2ﬁ<1+ln2
k=1 k=2




Question 1

Note that the statement of the question requires the use of a particular method in both parts.

(i)

B1 | Correct differentiation of the expression.

M1 | Consideration of the sign of the derivative for positive values of x.

Al | Deduction that the derivative is positive for all positive values of x.

B1 | Clear explanation that x — In(1 + x) is positive for all positive x.
Note that answer is given in the question.

Bl | Useofx = %and summation.

M1 | Manipulation of logarithmic expression to form difference.

M1 | Attempt to simplify the sum (some pairs cancelled out within sum).

Al | Clear explanation of result.
Note that answer is given in the question.

(i)

B1 | Correct differentiation of the expression.

M1 | Consideration of the sign of the derivative for 0 < x < 1.

Al | Deduction that the derivative is negative for this range of values.

B1 | Deduction that x + In(1 — x) is negative for this range of values.

Bl | Useof x = k—t and summation.

M1 | Expression within logarithm as a single fraction and numerator simplified.

M1 | Logarithm split to change at least one product to a sum of logarithms or one quotient as a
difference of logarithms.

Al | Complete split of logarithm to required form.

M1 | Use of differences to simplify sum.

Al | In2 correct.

B1 | Correctly dealing with limit as n — oo.
Note that answers which use oo as the upper limit on the sum from the beginning must
have clear justification of the limit. Those beginning with n as the upper limit must have
Inn — In(n + 1) correct in simplified sum.

Al | Inclusion of k = 1 to the sum to reach the final answer.

Note that answer is given in the question.




Question 2

LACB =1 —3a Bl
AB X
: = M1 A1l
sin(m—3a) sina
sin(r — 3a) = sin 3« B1
_xsin 3a
__ sina :
_ x(sin a cos 2a + cos a sin 2a) M1
sina .
:x(smax(l—Zsm a) + cosa X 2sina cosa) M1 M1
sina
AB = (3 — 4sin? a)x Al
DE = AB — BE — AD (or DE = DB — BE) B1
DE = AB — BE —2AB = ZAB — BE
x
DE=E(3—4sin2a)—xc052a B1B1
X x
DE ==((3 - 4sin?a) - 2(1 — 2sin? @) = 3 'V'1A'1V'1
sin(FCE) =22 =2 sozFCE=Z B1
X2 6 M1 A1
Therefore ZACF =T — 3a — (E—Za) _I=Z_g M1 M1
2 6 3
1 1
LACF :§(T[— 36{) :§LACB Al
So FC trisects the angle ACB




Question 2

B1 | Expression for ZACB (may be implied by later working).

M1 | Application of the sine rule.

Al | Correct statement.

B1 | Does not need to be stated as long as implied in working.

M1 | Use of sin(4 + B) formula.

M1 | Use of double angle formula for sin.

M1 | Use of double angle formula for cos.

Al | Simplification of expression.
Note that answer is given in the question.

B1 | Identification of this relationship between distances. (just BD — BE is sufficient)

B1 | Correct expression substituted for the length of BD.

B1 | Correct expression substituted for the length of BE.

M1 | Use of double angle formula for cos.

M1 | Simplification of expression obtained.

Al | Correct expression independent of x.

B1 | Identification of a right angled triangle to calculate sin(ZFCE).

M1 | Deduction that one of the lengths in sine of this angle is equal to DE.

Al | Value of the angle (Degrees or radians are both acceptable).

M1 | Obtaining £BCE = % - 2a

M1 | Use of LZACF = LACB — £BCE — £FCE.

Al | Expression to show that ZACF = %AACB and conclusion stated.




Question 3

Tg — T, is the number of triangles that can be made using a rod of length 8 and M1
two other, shorter rods.
If the middle length rod has length 7 then the otherrod can be 1, 2, 3,4, 5 or 6. M1
If the middle length rod has length 6 then the other rod can be 2, 3, 4 or 5.
If the middle length rod has length 5 then the other rod can be 3 or 4. M1
Assume that the longest of the three rods has length 7: m1
If the middle length rod has length 6 then the other rod can be 1, 2, 3, 4 or 5. M1
If the middle length rod has length 5 then the other rod can be 2, 3 or 4.
If the middle length rod has length 4 then the other rod must be 3. M1
Therefore T, — Tg =14 3 + 5. Al
Tg_T6:TB_T7+T7_T6:1+2+3+4+5+6. Al
TZm_TZm_1:2+4’+'+2(m_1) B1
TZm_TZm_2:1+2+3+'+2(m_1) Bl
T, = 3. (The possibilities are {1, 2,3},{1, 3,4} and {2, 3, 4}.) B1
Substituting m = 2 into the equation gives T, = %(2)(2 - 1@ x2+1)=3.
Therefore the formula is correct in the case m = 2. B1
Assume that the formula is correct in the case m = k:
2k

M1

Ty = Tor + Z r
r=1 -

Togeeny = zk(k — 1)(4k +1) + %(Zk +1) M1
Tyessy = §[4k2 —3k—1+12k+6] = “‘Z” (k)(4(k + 1) + 1), which is a M1
statement of the formula where m = k + 1.
Therefore, by induction, Ty, = %m(m —1DM@m+1) Al
sz_sz_l=2+4+"'+2(m_1)=m(m_1). M1Al
Therefore Typy_1 = %m(m —1DM@m+1)—m@m-—1).
Tym-1 = zm(m — 1)(4m — 5). (O Tppnyy = zm(m + 1) (4m — 1)) Al




Question 3

M1 | Appreciation of the meaning of Tg — T.

M1 | Identify the number of possibilities for the length of the third rod in one case.

M1 | Identify the set of possible cases and find numbers of possibilities for each.

Al | Clear explanation of the result.
Note that answer is given in the question.

M1 | An attempt to work out T, — T.

M1 | Correct calculation for any one defined case.

M1 | Identification of a complete set of cases.

Al | Correctvalue for T, — Tg.

Al | Correct deduction of expression for Tg — Tj.

B1 | Correct expression. No justification is needed for this mark.

B1 | Correct expression. No justification is needed for this mark.

B1 | Correct justification that T, = 3. Requires sight of possibilities or other justification.

B1 | Evidence of checking a base case. (Accept confirmation that m = 1 gives T, = 0 here.)

M1 | Application of the previously deduced result.

M1 | Substitution of formula for m = k and the formula for the sum.

M1 | Taking common factor to give a single product.

Al | Re-arrangement to show that it is a statement of the required formula whenm = k + 1
and conclusion stated.

M1 | Use of result from start of question.

Al | Correct summationof2 + 4 + ---4+ 2(m — 1).

Al | Correct formula reached (any equivalent expression is acceptable).




Question 4

(i)

I I g

y=f(x)

B1
B1

i( x ): (1+x2)(1)-(x)(2x)

—= (LrD)? , SO stationary points when x = +1.

B1
B1
M1
Al
Al

y=gXx)

B1
B1
B1
B1

(iii)

B1
B1
B1
B1

= T y=h@)

B1
B1
B1
B1
B1




Question 4

Penalise additional sections to graphs (vertical translations by +1) only on the first occasion
providing that the correct section is present in later parts.

B1 | Correct shape.

Bl | Asymptotesy = gand y = 37” shown.

B1 | Rotational symmetry about the point (0,0).

B1 | Correct shape.

M1 | Differentiation to find stationary points.

Al | Correct stationary points - (i 1, i%) (x-coordinates)

Al | Correct y-coordinates.

B1 | Rotational symmetry about the point (0, ).

B1 | Correct shape.

B1 | Stationary points have same x-coordinates as previous graph. (Follow through incorrect
stationary points in previous graph if consistent here).

B1 | Correct co-ordinates for stationary points - (i 1, + arctan %)

B1 | Correct asymptotes x = +1.

B1 | x-axis as an asymptote.

B1 | Middle section correct shape.

B1 | Outside sections correct shape.

B1 | Section for —1 < x < 1 correct shape.

Bl | p(-1) =~.

B1 =3
h(1) -

B1 | Section for x > 1 correct with asymptote y = 2.

B1 | Section for x > —1 correct with asymptote y = 0 or a rotation of x > 1 section about

(0, m).




Question 5

(i)

tan S; = tan (arctan %) = 1—;, so the formula is correct forn = 1. B1
Assume that tan S, = .
k1+1
Sk+1 = Sk + arctan D M1
k1
tan Syq = —or 2ke? M1
1
1_(k_+1)(2(k+1)2)
2
tan Sy = M, which simplifies to
2(k+1)3-k M1 A1l
tan S = ()
k+1 ™ ey 1)+1
i i ="
Hence, by induction tan S,, = vy Al
Clearly, S; = arctan G) Bl
Suppose that it is not true that S,, = arctan (#) for all values of n.
Then there is a smallest positive value, k such that S}, # arctan (ﬁ)
: _ k1 _ *
Since S, > Si_1, Sk—1 = arctan( . ) andtan S, = il but S, # arctan (k+1) M1 M1
Sk - Sk—l > 1.
However, S, — S;_; = arctan (ﬁ) < g, so this is not possible. Al
Therefore S,, = arctan (L) Al
n+1
o 2
(i) | tan2q, = 22 M1 A1
an*—1
' 2tan2an _ 4‘7}12 B1
1-tan?a,  4n*-1
Which simplifies to 2n? tan® a,, — (1 — 4n?) tana, — 2n? = 0 M1 A1
(tana, + 2n?)(2n%tana, — 1) =0 Al
Since a,, must be acute, tan a,, cannot equal —2n?. B1
Therefore a,, = arctan (LZ)
2n
) s
Z a, = lim S, = arctan1 = —. M1 A1
n—oo 4

n=1




Question 5

B1 | Confirmation that the formula is correct forn = 1.

M1 | Expression of S, in terms of S.

M1 | Use of tan(A + B) formula.

M1 | Simplification of fraction.

Al | Expression of S;,; to show that it matches result.

Al | Conclusion stated.

B1 | Confirmation forn = 1.

M1 | Observation that S —S,_1 >0

M1 | Evidence of understanding that successive values of x with the same value of tan x must
differ by m.

Al | Evidence of understanding that S, — S, _1 cannot be sufficiently large for S, to be of the
form arctan x if Sp,_ is.

Al | Clear justification.

M1 | Identification of the relevant sides of the triangle (diagram is sufficient).

Al | Correct expression for tan 2a,,.

B1 | Use of double angle formula.

M1 | Rearrangement to remove fractions.

Al | Correct quadratic reached.

Al | Quadratic factorised.

B1 | Irrelevant case eliminated (must be justified).

M1 | Sum expressed as limit of S,

Al | Correct value justified.

Note that answer is given in the question.




Question 6

(i)

sec? (E - f) S B1
AT )
1
2 (T X
sec|-—=) = Bl
(4 2) (cos%cosg + sinZ sin ;)2
sec? (E - f) = 2z
* % (cos%+sin E)2
(cos§+sin§) = cos —+251n cos? X + sin? >=1+sinx M1
2(m _ X\ — 2
Therefore, sec?(Z — %) = —— M1 A1l
x=—tan(Z-%) +c. M1 A1
(@) | L ¥ =72 Y =0
x=0->y=m
dy
=X Bl
dx
sin(mr — x) = sinx B1
Therefore, f: xf(sinx) dx = f;(n —y) f(sin(m — y))(—=1)dy
fon xf(sinx) dx = fon(n —x) f(sinx)dx
So, 2 f:xf(sinx) dx = nfonf(sinx)dx M1
fon xf (sinx) dx = %fgrf(sin x)dx Al
7T T
fo 1+Smx 0 Troez dx, and applying the result from part (i):
Jy 1+Smx = [— tan(3 -] = (~tan(-3)) - (~tan(})) = 2. B1
T
f 1+smx ) @) =r Bl
(iii) | consider fon x3 f(sin x) dx. Making the substitution y = = — x:
[ 3 f(sinx) dx = [ (w = ) f(sin(m — y))(~1dy M1 A1
So, fon x3f(sinx) dx = fon(n —x)3 f(sinx)dx
Therefore, [ (2x3 — 3mx2)f(sinx) dx = [ (73 — 3m2x) f(sinx)dx B1
0 0
T_ 1 g =L (Teact(r_x
fo e dx = 4[0 sec (4 2) dx -
T 1 1,7 T x T x T x
Jo asn? dx = ZIO sec?(Z—%) + tan?(Z — ) sec?(Z— %) dx
T 1 _11_ T _x\_ 2 3(m _x T[_i
fO (1+sin x)2 dx = 4[ 2tan(z 5) 3 tan (Z 5)]0 B Al
2
Andso f mdx—? Bl
3_ 2
Therefore, [T 2" gy = 13 (i) — 3m? (Z—E) = —§n3. B1

0 (1+sinx)? 3




Question 6

B1 | Expression of sec? @ in terms of any other trigonometric functions.
B1 | Correct use of a formula such as that for cos(4 + B) to obtain expression with
trigonometric functions of g
M1 | Expanding the squared brackets.
M1 UseofsianZsin%xcos%xand sinZ%x+c052%xE 1
Al | Fully justified answer.
Note that answer is given in the question.
M1 | Any multiple of tan(% — ’Z—C)
Al | Correct answer
B1 | Deals with change of limits correctly. AND
Correctly deals with change to integral with respect to u.
Note that both these steps need to be seen - the correct result reached without evidence
of these steps should not score this mark.
B1 | Use of sin(mm — x) = sin x (may be just seen within working)
M1 | Grouping similar integrals.
Al | Fully justified answer.
Note that answer is given in the question.
B1 | Evaluation of the integral from (i) with the appropriate limits.
B1 | Use of result from (ii) to evaluate required integral.
M1 | Attempt to make the substitution.
Al | Substitution all completed correctly.
B1 | Rearrange to give something that can represent the required integral on one side.
M1 | Use of sec? 8 = 1 + tan? 6 within integral.
Al | Correct evaluation of this integral.
B1 | Correct use of result from part (i).
B1 | Correct application of result deduced earlier to reach final answer.




Question 7

(i) | Most likely examples: M1 M1
2 2

x*+(ytVrz—a?) =r?and (x £Vr2 —a?) +y? =12 Al
If r < a then there cannot be two points on the circle that are a distance of 2a
apart and any two diametrically opposite points on C must be a distance of 2a B1
apart.
If r = a then the circle must be the same as C, so there is not exactly 2 points B1
of intersection.

(i) | The distances of the centre of D from the centres of C; and C, are /2 — a;2 M1 A1
and /7% — a,?. B1
If the x-coordinate of the centre of D is x, then the y-coordinate is given by
12 —a2=y2+(d+x)?andr? — a,® = y? + (d — x)? BlB1

1°=y x)“andrc —a,* =y*+( X)
Therefore, (d + x)?> — (d — x)? = (r? — a;?) — (r? — a,?) M1

2_. 2
4dx = a,? — a;2 and so x = & 4:1 : M1 A1
Therefore, the y-coordinate of the centre of D satisfies
2 2 B1
2 _ 22 42 az’-a,? 2 _ 22 2 _ az’-a,?
ye=rc—a (d+ v )andy =r‘—a, (d y” )
2 2

2 _ 2 2 2 a2—a,? B B a,2—a,?

So2y® =2r° —a;° —a, (d+—4d ) (d ol )
2_ . 27\2

2y2 =2r2 — a2 —a,? —2d* -2 (—az 4;1 )

_ |2 _wtral g (@Pma?)?
s0, = [y~ g2 - (82)

2 2 2_, 2\2
Therefore, 72 — 1% _ g2 _ (M) >0 B1
2 4d

16r2d? — 8a,°d? — 8a,%d? — 16d* — (a,® — ;%) > 0 M1 M1
16r2d? > 16d* + 8a,°d? + 8a,%d? + (a,? — a;?)?
16r2d? > (4d? + a;2 + a,%)? + (a2 — a;2)? — (4% + a,?)? M1
16r2d? > (4d? + a,% + a,%)? — 4a,%a,? M1
16r2d? > (4d? + a,% + a,? — 2a,a,)(4d? + a;° + a,? + 2a,a,)
16r%2d? > (4d? + (a; — ay)?)(4d? + (a; + a,)?) Al




Question 7

M1 | calculation that the distance between the centres of the circles must be V72 — aZ2.

M1 | An example which shows that it is possible for at least one value of r.

Al | Example showing that it is possible for all v > a.

B1 | Statement that the two intersection points must be a distance 2a apart.

B1 | Explanation that in the case r = a it would have to be the same circle.

M1 | The line joining the centre of C; (or C,) and the radii to a point of intersection form a right
angled triangle in each case. (one case)

Al | Use of this to find the distance between centres of circles.

B1 | Applying the same to the other circle.

B1 | Expression relating the co-ordinates and radii obtained from considering C;.

B1 | Expression relating the co-ordinates and radii obtained from considering C,.

M1 | Elimination of y from the equations.

M1 | Either expansion of squared terms or rearrangement to apply difference of two squares.

Al | Expression for x reached.
Note that answer is given in the question.

B1 | Substitution to find expression for y-coordinate.
Note that any expression for y in terms of d, r, a, and a, is sufficient, but it must be
expressed asy = ---, not y* = ---,

B1 | Observation that y2 must be positive.
Alternative mark scheme for this may be required once some solutions seen.

M1 | Attempt to rearrange the inequality to get 1672d? on the left.

M1 | Reach a point symmetric in a; and a,.

M1 | Reach a combination of squared terms.

M1 | Apply difference of two squares to simplify.

Al | Reach the required inequality.

Note that answer is given in the question.




Question 8

(i)

Let a be the vector from the centre of C, to P.

Using similar triangles, the vector from the centre of C; to P is :—1a. M1 A1
2
Therefore :—la — a = x5 — X4, since these are both expressions for the vector M1
2
from the centre of C; to the centre of C,.
)
Soa=—"(xy — x1) Al
L5l i)
The position vector of P is x5 + T;TZTZ (xg —x1) = % M1 A1
(i) | The position vectors of Q and R will be 2158 g g 2537 Ts72 B1
=" T2—T3
Therefore,
P—Q) _ T3X1—TiX3  TiXp—TpX1 _ x1[r3(r1 —12)+12 (i3 —1) ] =2 [ry (3 —11) | =3[y (11 —72)] M1 A1
3T LTl i) (ra—=ry)(ry=13)
— 7
PQ =m(x1[r3 =12l + x2[ry = 3] + x3[1, — 1)) M1 A1
.. - T
Similarly, QR = m(xl [r3 — 1] + x5y — 3] + x3[1, — 11]) M1 A1l
2 3 3 1 M1 Al
Since they are multiples of each other the points P, Q and R must lie on the B1
same straight line.
(iii) | Q lies halfway between P and R ifP—Q) = Q—R) Bl
Therefore L = s M1
(ra—r)(r1—15)  (rp=13)(1r3—141)
So, 1 (r, —13) =13(1y — 1)
Which simplifies to ry 1y, + 1,13 = 2113 M1A1




Question 8

M1 | Identification of similar triangles within the diagram.
Al | Relationship between the two vectors to P.
M1 | Equating two expressions for the vector between the centres of the circles.
Al | Correct simplified expression.
M1 | Calculation of vector from centre of one circle to P.
Al | Correct position vector for P.
Note that answer is given in the question.
B1 | Identifying the correct vectors for the foci of the other pairs of circles.
M1 | Expression for vector between any two of the foci.
Al | Terms grouped by vector.
M1 | Simplification of grouped terms.
Al | Extraction of common factor.
M1 | Expression for a vector between a different pair of foci.
Al | Award marks as same scheme for previous example, but award all four marks for the
M1 | correct answer written down as it can be obtained by rotating 1, 2 and 3 in the previous
Al | answer.
B1 | Statement that they lie on a straight line.
B1 | Statement that the two vectors must be equal.
M1 | Reduction to statement involving only r terms.
M1 | Attempt to simplify expression obtained (if necessary).
Al | Any simplified form.




Question 9

(i)

Taking moments about A:

Mg = 3mgasin(30 + 6) M1 A1
M, = 5mgasin(30 — ) M1 A1
Mg = M, B1
5mga(cos 30 sin 6 + cos 6 sin 30) = 3mga(cos 30 sin & — cos O sin 30) M1
V3 1 V3 1
Pt Z =3|—sinf — = Al
5(251n9+2c059> 3<251n0 2cos€>
Therefore
. Al
4+/3sin @ = cos 6
Either
Use sin? 8 + cos? 8 = 1 and justify choice of positive square root.
Or M1
Draw right angled triangle such thattan 8 = % and calculate the length of the
hypotenuse.
sinf == Al
7
(ii) | Let hy be the vertical distance of B below A.
Let h, be the vertical distance of C below A.
h1=asin(E—9)=Ea M1 M1
3 14 Al
. (T 13
hz—asm(§+9)—ﬁa M1 A1
If X is the centre of mass of the triangle:
_ 3 _ 3ha+5h; _ 7 M1A1l
AX =h = — = 3
Cons;:rvatlon of energy: . M1 A1
4mv~ = Bmg. 2h for complete revolutions.
Therefore v, = /ZgTa Al




Question 9

M1 | Attempt to find the moment of B about A.

Al | Correct expression for moment (sin(30 + 8) may be replaced by cos(60 — 8)).

M1 | Attempt to find the moment of C about A.

Al | Correct expression for moment (sin(30 — 8) may be replaced by cos(60 + 9)).

B1 | Correct statement that these must be equal.

M1 | Use of sin(4 + B) or cos(4 + B) formulae.

Al | Correct values used for sin 30 and cos 30.

Al | Correctly simplified.

M1 | Use of a correct method to find the value of sin 9.

Al | Fully justified solution. If using right angled triangle method then choice of positive root not
needed, if choice of positive root not given when applying sin? 8 + cos? 8 = 1 method
then M1 A0 should be awarded.

Note that answer is given in the question.

M1 | Attempt to find h;.

M1 | Correctly deal with sine or cosine term.

Al | Correct value.

M1 | Attempt to find h,.

Al | Correct value.

M1 | Combine two values to obtain distance of centre of mass from A.

Al | Correct value

M1 | Apply conservation of energy.

Al | Correctinequality.

Al | Correct minimum value.




Question 9 Alternative part (i)

(i)

Let X be the centre of mass of the triangle and let the distance CX be d.

Taking moments about X:

5mgd cos 8 = 3mg(a — d) cos M1A1
Therefore 5d = 3(a —d),sod = Za. Al
X must lie on BC and 2XAC = 30 — 6. B1

3

Zacosf
sin(30 — §) = &~ M1
sin30 cos @ + cos 30 sin @ =gc059 M1
co:@ _ \/§szin 9. Al
Therefore cos 8 = 4+/3 sin 6 and so cos? § = 48 sin? 6 M1
sin? @ = 4—19, and so (since 6 is acute) sin8 = % M1 A1

M1 | Taking moments.

Al | Correct equation.

Al | Correct relationship between d and a.

B1 | Identification that X lies on BC and calculation of £XAC.
M1 | Use of sine of identified angle.

M1 | Use of sin(4 — B) formula.

Al | Direct relationship between sin 8 and cos 6.

M1 | Rearrangement and squaring both sides.

M1 | Applying sin® 6 + cos? 8 = 1.

Al | Final answer (choice of positive root must be explained).

Note that answer is given in the question.




Question 10

If the length of string from the hole at any moment is [, then % =-=V. B1
The distance, x, from the point beneath the hole satisfies, h? + x? = [2. B1
ax_ 4 2_21)_1 2 _pyzx Y
Therefore P ((l h%)z ) = > (I*—h*)"zx 21 = M1A1
1
% =—lWW{?-h?)"2=-V X i, and i = cosec M1
Therefore, the speed of the particle is V cosec 6. Al
. d a6
Acceleration: - (V cosec8) = —V cosec b cotO X - M1A1
- —Isi — in2 @—
sing = f' <0 COS 9% _ U=V cosecO)-Isin6(-V) _ V(sm. 6-1) M1
L dt 12 Lsinf
Therefore % = — % cotf Al
2
The acceleration is V cot? 0 M1
sin 6
2
Since | = h sec 8, the acceleration can be written as %cot?’ 6. M1 A1
Horizontally: , . M1 M1
Tsinf = %cot3 0,s0T = %cot3 0 cosec 6 Al
The particle will leave the floor when T cos 8 = mg M1A1
2 2
%cot“e = mg and so tan* 6 =;—h M1 A1




Question 10

B1 | Aninterpretation of VV in terms of other variables (including any newly defined ones).

B1 | Any valid relationship between the variables.

M1 | Differentiation to find horizontal velocity.

Al | Correct differentiation.

M1 | Attempt to eliminate any introduced variables.

Al | Correct result.
Answers which make clear reference to the speed of the particle in the direction of the
string being V.

M1 | Differentiation of speed found in first part.

Al | Correct answer.

. . . . ae
M1 Attempt to differentiate to find an expression for -

Al | Correct answer.

M1 | Substitution to find expression for acceleration.

M1 | Relationship between required variables and any extra variables identified.

Al | Substitution to give answer in terms of correct variables.

M1 | Horizontal component of tension.

M1 | Application of Newton’s second law.

Al | Correct answer.

M1 | Vertical component of tension found.

Al | Identification that particle leaves ground when tension is equal to the mass.

M1 | Substitution of their value for T.

Al | Rearrangement to give required result.
Note that answer is given in the question.




Question 11

(i) |A(x—acos8,asinf) B1B1
Differentiating: (x —a(—sin)86, a(cos 9)9) M1
Since B is moving with velocity v and is at the point (x,0) at time t, x = v:

Velocity of A is (v + afsin 6, ab cos 9). Al

(ii) | Initial momentum was mu (horizontally). M1
Horizontal velocity of C will be the same as that of A4, so horizontally the total M1
momentum is given by mv + Zm(v + af sin 9)

Therefore 3v + 2af sin 6 = w. Al
Initial energy was %mu2 M1
.1 2 1 . 2 . 2
Total energy is Smv + 2 (Em ((v + afsin 9) + ( af cos 9) )) M1 A1
Therefore u? = v2 + 2(v? + 2avfsin 6 + a?6?sin? 6 + a?6% cos? 9) M1
So u? = 3v2 + 4avf sin O + 2a26?
Substituting v = u-2a9sin6 gives
. 3 2 . . . M1
3u? = (u—2afsin6)” + 4absind (u — 2ad sin 0) + 6a%6?
6a20% = 3u? — u? + 4aub sin 6 — 4a%6? sin? O — 4aub sin  + 8a26?sin?
6a%0% — 4a%6? sin? 0 = 2u?
2 Uz
S0, 07 = a?(3-2sin20)’ Al

(iii) | 82 > 0, so there can only be an instantaneous change of direction in which 6 B1
varies at a collision. Since the first collision will be when 8 = 0, the second B1
collision must be when 8 = m.

(iv) | Since horizontal momentum must be mu, v = 0 = 2afsinf = u. Bl
The KE of A must be %muz, so %mazéz = %mu2 B1
%mazéz = ma?6?sin® 0
sin2@ ==, 506 = ZorZ M1 A1l

2 4~ 4 :
vis only 0 when 6 takes these values and 6 is positive as v would need a non-
zero value to satisfy 3v + 2a0sinf = uiffis negative. (The relationship is still B1

true since collisions are elastic).




Question 11

B1 | Horizontal component.

B1 | Vertical component.

M1 | Differentiation.

Al | Complete justification, including clear explanation that x = v.
Note that answer is given in the question.

M1 | Statement that momentum will be conserved.

M1 | Identification that horizontal momentum of A and C will be equal.

Al | Correct equation reached.
Note that answer is given in the question.

M1 | Statement that energy will be conserved.

M1 | Use of symmetry to obtain energy of C (accept answers which simply double the energy of
A rather than stating the vertical velocity in opposite direction).

Al | Correct relationship.

M1 | Use of sin? 8 + cos? 6 = 1.

M1 | Substituting the other relationship to eliminate v.

Al | Correct equation reached.
Note that answer is given in the question.

B1 | Correct value of 6.

B1 | Answer justified.

B1 | First equation identified.

B1 | Second equation identified.

M1 | Solving simultaneously to find 4.

Al | Correct values for 6.

B1 | Justified answer that v is not always 0 when 6 takes these values.




Question 12

(i)

If a tail occurs then player B must always win before A can achieve the

sequence required. Therefore the only way for A to win is if both of the first B1

two tosses are heads.

After the first two tosses are heads it does not matter if more tosses result in B1

heads as the first time tails occurs A will win.

The probability that A wins is therefore % X % = % B1
(ii) | As before, after HH, only A can win. B1

Similarly, after TT, only C can win. B1

In all other cases for the first two tosses only B and D will be able to win. M1

The probabilities for B and D to win must be equal. M1

The probability of winning is i for all of the players. Al
(iii) | If the first two tosses are TT then C must win (as soon as a H occurs), so the B1

probability is 1.

After HT:

C must win if the next toss is a T as B needs two Hs to win, but C will win the M1

next time an H occurs.

If the next toss is H, then the position is as if the first two tosses had been TH, M1

and so the probability that C wins from this point is g.

Therefore, p = % X1+ % X q Al

After HH:

If the next toss is H then C will win with probability r.

If the next toss is T then C will win with probability p. M1

Therefore r = %r + %p, andsop =r. Al

After TH:

If the next toss is H then player B wins immediately.

If the next toss is T then C will win with probability p. M1

Therefore g = %p. Al

Solving the two equations in p and g, gives p = %, q= é

From the third equation r = g M1 A1

The probability that C wins isl(l +E+1+3) =2 M1 A1l

4 3 3 3

3




Question 12

B1 | Identifying that A cannot win once a tail has been tossed.
B1 | Identifying that A must win once the first two tosses have been heads.
B1 | Showing the calculation to reach the answer.
Note that answer is given in the question.
B1 | Recognising that the situation is unchanged for player A.
B1 | Recognising that the same logic applies to player C.
M1 | All other cases lead to wins for one of the remaining players.
M1 | Recognising that the probabilities must be equal.
Al | Correct statement of the probabilities.
If no marks possible by this scheme award one mark for each probability correctly
calculated with supporting working. All four calculated scores 5 marks.
B1 | Explanation that probability must be 1.
M1 | Explanation of the case that the next tossis T.
This mark and the next could be awarded for an appropriate tree diagram.
M1 | Explanation of the case that the next toss is H.
Al | Justification of the relationship between p and q.
Note that answer is given in the question.
M1 | Consideration of one case following HH.
This mark could be awarded for an appropriate tree diagram.
Al | Establishment of the relationship.
M1 | Consideration of one case following TH.
This mark could be awarded for an appropriate tree diagram.
Al | Establishment of the relationship.
M1 | Attempt to solve the simultaneous equations.
Al | Correctvalues forp, gandr.
M1 | Attempt to combine probabilities to obtain overall probability of win.
Al | Correct probability.




Question 13

(i)

_ky+alX—-y) forX>y

¢ ky forX<y B1
E(0) =ky+af (x — y)Ae Mdx M1M1
y Al
Use the substitution u = x — y in the integral:
f (x —y)Ae ™ Mdx = e"‘yf ule My B1
y 0
—u [, ,—2ul® —u | po—Au _ 1 —2u ® _1
fouxle du—[ue ]O+Le du—[ue € ]0—/1 M1
Therefore E(C) = ky + %e"ly. Al
% (E(C)) = k — ae™, so the stationary point occurs when y = %ln % M1 A1
If% > 1 then choose y = %ln% as it is positive.
If% < 1 then choose y = 0 as the minimum occurs at a negative value of y. B1
(i) E(C?) = k?y? + f 2aky(x — y)le ™ + a?(x — y)?le dx M1 A1
y
Use the substitution u = x — y in the integral:
Integral = e"‘yf 2akyule ™ + a?u?le *Mdx B1
0
Applying integration done before:
@ i 2aky
2akyute™tdx =
0 A
Using integration by parts:
® 2 29 -1 _ 2.2 _Aul® o 2a2ute~ M M1A1l
Jy a*ule~Mdx = [—a*u’e “]0 +J, ——
and, applying the integration already completed,
o 2a%ue M _ 2a?
y =G =%
2
Therefore E(C?) = k?y? + %e"b’ + %e"ly. Al
Var(C?) = E(C?) — E(C)? M1
2y _ 2,2 4 2aky _ay 2027 5y E—lyz
Var(C)—ky+Ae +—5e (ky+le )
2
Var(C?) = Z—Z(Ze"ly — e 72, Al
i(Valr(CZ)) = Z—aZe"ly(e"ly -1) M1
dy A
Fory > 0, % (Var(CZ)) < 0, so the variance decreases as y increases. Al




Question 13

B1 | Statement of random variable.
M1 | Any correct term in expectation (allow ky multiplied by an attempt at the probability for
not needing any extra costs).
M1 | Correct integral stated (allow —y missing).
Al | Fully correct statement.
May be altered to accommodate other methods once solutions seen.
B1 | Substitution performed correctly.
M1 | Integration by parts used to calculate integral.
Al | Correctly justified solution.
Note that answer is given in the question.
M1 | Differentiation to find minimum point.
Al | Correct identification of point.
B1 | Both cases identified with the solutions stated.
M1 | Attempt at E(C?) (at least two terms correct).
Al | Correct statement of E(C?).
B1 | Substitution performed correctly.
M1 | Applying integration by parts.
Al | Correct integration.
Al | Correct expression for E(C?).
M1 | Use of Var(C?) = E(C?) — E(C)?
Al | Correct simplified form for Var(C?)
M1 | Differentiation of Var(C?).
Al | Correct interpretation.

Note that answer is given in the question.




1. (i)
3 1 r 1
h=tos = [ Gt | e
0 0

= f (1 + u2)ntt du
0

[oe]

-1

u
—[u—Y 4 =[ -
j arurt T Y@ ue)n
0

L]

1+u?-1

= (1 + u2)ntt du
0

B1

-1
—d
2n(1 + u2)n u

integrating by parts M1 A1l
0+ 1 f 1 duy = 1
B 2n) (1 +u?)" Y=o
0
AL* (4)
1 2n-1
In+1:In_an: Tzln L, M1
_ @n-nen=3).(1)
T (@n)@2n-2)..2) ! M1
= oo; — -1 o _ T
L= rad) du = [tan™" u]g = 7 B1
2n-1)(2n-3)..(1) _ 2n)(2n-1)(2n-2)(2n-3)..(2)1) _ @n)! _  (2n)! Vi1
@en)(2n-2)..2) [(2n)(2n—2)...(2)]? 2z T 22n(mn?
_ em) m_ (@n)r
Thus [, = Zzn(n!)ZE T 22nt1(p))2 Al* (5)
(ii)

o) 0
] = f f((x—xH)Hdx = ff((u‘1 —u)?).—u2du =
0 o)

-1 du_ -2

using the substitution u = x7+, o

[ee)

ERCE

0

2] = | fl(x —xH%dx + x H2)dx =
| |

So J =3[y f((x —x™)A) (A +x~?)dx

-1 du
, —

dx

Using the substitution u = x — x 1+ x72,

and then the substitution u=x,—=1

[ERICEEREL

0

du M1A1*
dx

flx—xDHA +x"2)dx

M1A1*



J =35 (G =2+ 2 Ddx = [, ) du = [ fuP)du MIAL* (6)

(iii)

Ide —med —foox—_zd M1A1
0 (x*—x2+1)n *=J (x2-1+x—2)" =l ((x=x~1)2+1)n x

0o 1
= J, (u2+1)ndu M1
So
[0 ="t _qu=1 M1
0 (x*-x2+1)" *=Jo (u2+1)n U=rn

(2(n-1)'m _ (@n-2In

_ — Al
22("_1)+1((n—1)!)2 22”—1((71—1)!)2 Gl



2. (i) True. B1

m = 1000 B1

If n > 1000, then 1000 < n,so 1000n < n?,i.e. (1000n) < (n?) M1A1 (4)

(ii) False. B1

E.G.Let s, =1 and t,, =2 for n odd,and s, =2 and ¢, =1 for n even. B1
Then Am for whichfor n>m , s, <t,,nor t, < s, M1
So it is not the case that (s,) < (t,), but nor is it the case that (t,) < (s;,,) A1 (4)
(iii) True. B1

(sp) < (t,) means that there exists a positive integer, say m, , for which for n >m, , s, <t,.
El

(t,) < (u,,) means that there exists a positive integer, say m, , for which for n >m, , t, <u, .
El

Then if m = max(m,,m,), B1
forn>m, s, <t, <u,,andso (s,) < (u,) Al (5)
(iv) True. B1
m=4 B1
Assume k? < 2K for some value k > 4. B1
Then (k + 1)2 = (%)2 k2 = (1 +%)2 k2 < (1 +%)2k2 =2Zk2 < 2k? <2 x 2% = 2K+
M1A1
4% =24 B1

so by the principle of mathematical induction, n? < 2™ for n > 4, and thus (n?) < (2"™) A1(7)



Pl
|
g r
o s T
e
|
Symmetry about initial line Gl
Two branches G1
Shape and labelling G1(3)
If |r—asec@|=b ,then r—asecf =b or r—asecd =—b
So r=asecf+b or r=asecfd —b M1A1

If secd <0, asecb+b<—-—a+b<0 a a>b and asecl —b<—-a—b<0 asaandb
are both positive, and thus in both cases, r < 0 which is not permitted. B1

If secd >0, asecO+b>a+b>0and asecd —b>a—b>0 givingr>0
so secd > 0 asrequired. Bl (4)

So r =asech *+ b , thus points satisfying (*) lie on a certain conchoid of Nicomedes with A being

the pole (origin), B1
d being b, Bl
and L being the line r = asecé . B1(3)

(ii)

Symmetry about initial line Gl
Two branches G1
Loop, shape and labelling G1



If a < b ,thenthe curve has two branches, r = asec8 + b with secd >0 and r =asecfd + b

with sec8 < 0 , the endpoints of the loop corresponding to sec8 =_?b . B1 (4)
Inthecase a=1 and b=2, secf =_TZ= —2s0 0= i%ﬂ

Area of loop

=2 %f%(sec@ +2)2d8 M1A1

= [sec? 6 + 4sechd +4d6 = [tan 6 + 4In|secd + tan O] + 40]% M1A1
3 3

=4n—(—V3+4In|-2-V3|+Z)=Z + V3 —41n|2+ V3 M1A1 (6)
( | 3 3



4. (i) y=z3+az?+bz+c is continuous.
For z > —oo,y - —o0 andfor z > o,y = oo . B1

So the sketch of this graph must be one of the following:-

alan
TC#_ .

B1

Hence, it must intersect the z axis at least once, and so there is at least one real root of
z34+az?+bz+c=0 B1(3)

(ii) z3+az?+bz+c=(z—2)(z—2)(z—23) M1

Thus a = (—z; — 2z, —23) = =5, Al

(21422423)%—(21%+2,%+232 $1%-58
b:(Z2Z3+Z3Z1+Z1Z2): L gl 2 2 ): 12 2 Al

and,as z;3 +az;?+ bz +c=0,23+az,> +bz, +c=0,z33+az;2 +bz;+c=0
adding these three equations we have,
(23 + 23+ 233+ a(zy? + 2,2 + 232) +b(z; + 2z, + z3) +3c=0 M1
(Alternatively,
(zy + 2z, +23)% =
(213 + 253 + 233) + 3(21%2, + 2,%25 + 232, + 2,225 + 2,°2; + 23%2,) + 62,225

(212 + 2,2 + 238 (21 + 25 + 23) = (203 + 233 + 233) + (2122, + 2,225 + 23% 2 + 21223 + 2,%2, +

23222) )

2_
2% g +3c=0 M1

50 S3 = 518, + 2

Thus 6¢ = (35,5, — S;° — 2S3) A1* (6)



(iii) Let z, = r(cos O +isinfy) for k =1,2,3 M1

Then z;? = 1 2(cos 20, + isin26,) and z,3 = 1. 3(cos 36y + isin36;) by de Moivre

As

andso S;, S, ,and S5 arereal,

and thereforesoare a, b, and ¢

3

Erksinek =0

k=1
3

2 T2 sin 26, =0

k=1
3

Z 1.3sin36, =0

k=1

Al

M1

Hence, as z;, z,,and zz are the roots of z3+az?+bz+c=0 with a,b,and c real, by part

(i), at least one of z; , z, , and z3 is real.
So for at least one value of k, 1, (cos 6y,

andas —w <0, <m, 6 =0 asrequir

M1
+ isin 6y ) isreal and thus, sin@, =0,

ed. A1(6)

If 6; =0 then z; isreal. z, and zz aretherootsof (z—2,)(z—23) =0

whichis z2 + (—z, — 23)z+ 2,23 = 0 (say z2 +pz+q=10)

p=-—2Z,—2zZz3=a+2z; and q = 2,73

roots has real coefficients. Thus z,, z3; =

If p2—4q <0,

1
—ptVp?-4q
2

M1

Thus cosf, =cosf;,andso 0, = +03,as—n <0, <m.

But sinf, = —sinf; andso 8, = —05.

M1 A1l

- Zi and so the quadratic of which z, and z; are the

. (z; # 0 because 1, > 0) B1

If p2 —4q = 0,then z, and z; are real roots, so sin@, = sinf; = 0, and thus 8, = 0; =0, so

92 = _93.

B1 (5)






5. (i) Having assumed that V2 is rational (step 1), V2 = p/q , where p,q € Z,q # 0 Bl

Thus from the definition of S (step 2), as ¢ € Zand V2 = q X P/q =p € Z,s0q € S proving step 3.
B1(2)

If k €S,thenk isaninteger and k2 is an integer.  B1

So (\/E - 1)k =kvV2 —kisan integer, B1

and (\/i - 1)k\/§ = 2k — k+/2 which is an integer and so (\/f - 1)k € S proving step 5. B1(3)
1<+v2 <2 andso M1

0<vV2-1<1,andthus0< (V2 —1)k <k Al

and thus this contradicts step 4 that k is the smallest positive integer in S as (\/E - 1)k has been
shown to be a smaller positive integer andisin S . A1l (3)

(i) If 2°/3 is rational, then 2%/3 = p/q , Where p,q €Z,q # 0

2 2 2 2
So (22/3) = (p/q) , thatiis 23 =P /q2 , Which can be written 2 X 23 =P /qz M1

2
and hence 2'/3 =P /Zqz proving that 2'/3 is rational. A1
If 273 is rational, then 2'3 = p/q ,where p,g €Z,q+0 M1

2
and so 22/3 =b /q2 proving that 22/3 is rational and that 21/3 is rational only if 22/3 is rational.
Al (4)

Assume that 21/3 is rational.

Define the set T to be the set of positive integers with the following property: nisin T if and only if

n2'/3 and n22/3 are integers. B1

The set T contains at least one positive integer as if 21/3 = p/q , Where p,q €Z,q # 0, then
2

q221/3 = q? xp/q =pq €Z and q222/3 = q? xp/qz =p?€Z,s0q?’€T. M1A1

Define t to be the smallest positive integerin T. Then t21/3 and t22/3 are integers. Bl

Consider t (22/3 - 1). t (22/3 - 1) = t2°/3 — t which is the difference of two integers and so is

itself an integer. t (22/3 - 1) X 21/3 =2t — t21/3 which is an integer,

and t (22/3 — 1) x 2°/3 = 2%3t — t2%/3 = 2 x 2'/3t — £2°/3 which is an integer.



Thus t (22/3 — 1) isinT. M1A1

1< 22/3 <2 andso 0 < 22/3 —1<1,andthus0 <t (22/3 — 1) < t, and thus this contradicts

2
that t is the smallest positive integerin T as t (2 /3 — 1) has been shown to be a smaller positive

integerandisinT . M1A1 (8)



6. () wzeR=>>uveR B1
For w,z € R, werequiretosolve w+z=u,w?+z>=v M1
wi+u-w)=v

2w? —2uw+ (w2 -v) =0

2ut+Vau? —8u? +8v u++V2v—u?
w = =
4 2

u+V2v—u?
2

Z =

M1A1

Sofor,z € R,asu = w + z must be real, v = w? + z2 must be real, and 2v —u? >0

ie. u? <2v B1* (5)
iu=w+z =u=w z wz soif w zZ°—u =—E,then —2wz=—E
so 3wz =1 M1A1

w3+ z23 =W+ 2)(W?+ 22 —wz) =u@? —-3wz) =u@w?-1)

M1A1
Thusif w3+z3—Au=-21, u@?-1)=A2u-1) M1A1
Thus (u—1Dw(u+1)—-1) =0, M1
wu-1DWw?+u-1)=0 M1A1
—1+V1+42

Thus u=1 or u = 5

Soas AR and A > 0 , the values of u are real. B1

There are three distinct values of u unless %M =1 inwhichcase +vV1+441=3,ie. A =2
M1A1 (12)

For w,z € R , from (i) we require u € R whichitis, u? —g € R whichitis, and u? < 2 (uz - g)

in other words u? > g. M1
So w and z need not be real. A counterexample wouldbe u =1 Bl

forthen w+2z =1, w? + z2 =§,so w? +(1-—w)? =§, ie. 2w2—2w+§=0inwhichcase

the discriminant is —% <0sowegR. B1 (3)



7. D2x% = D(D(x*)) =D (x;—x(xa)) = D(xax®1) M1

= D(ax%) = x%(ax“) = xa’x% 1 = q?x? M1A1 (3)
(i) Suppose D¥P(x) is a polynomial of degree 7 i.e. D¥P(x) = a,x” + a,_1x"" 1 + -+ aq
for some integer k . B1

Then D**1P(x) = D(a,x" + a,_1x" 1+ +ay) = x%(arxr + a1 x4+ ag)
=x(ra,x" '+ (r—Da,_x" %+ +a) =rax" + @ —Da,_1x" 4+ -+ agx
which is a polynomial of degree r . M1A1

Suppose P(x) = b.x" + b_1x""1 + -+ b, , then

DP(x) = x%(brxr + b1 x" "1+ -+ by) = b x” + (r — D)b_1x""1 + -+ byx so the result
istrueforn=1, M1A1

and we have shown that if it is true for n = k , itis true for n = k + 1. Hence by induction, it is
true for any positive integer . B1 (6)

(ii) Suppose D*(1 — x)™ is divisible by (1 — x)™ % i.e. D¥(1 —x)™ = f(x)(1 — x)™ ¥ for
some integer k , withk <m — 1. B1

Then DK*1(1— )™ = D(f(x)(1 — x)™ k) = x = (F)(1 — x)™)

= x(f'P1 =)™ * = (m—k)f )1 —x)™ 1)

= x(1 - )" (f'O(1 - x) — m— k)f (x)) which s divisible by (1 —x)™~(+D. M1A1
D(1—x)™ = x=-((1—x)™) = —mx(1 - x)™* soresultis true forn = 1. M1A1

We have shown that if it is true for n = k, itis true for n = k + 1. Hence by induction, it is true
for any positive integer < m. B1(6)

(iii)
@ -0m =310 (T) (=0 = g7 (7)) ma

So
p(1 =)™ =X o (-1 () D = Ty o (- )7 () M1A1

But by (ii), D™(1 — x)™ is divisible by (1 —x)™™ ™ andso D™"(1 —x)™ = g(x)(1 —x)™™™, and
thusif x =1, D™(1—x)™ =0, and hence

o7 (T =0 M1AL* (5)



) ox= W _ging 49T

8. (i) x=rcosb == rsm9+d9cost9 M1A1

dy=rsing =>2= 0 +ZLsing M1A1
and y = rsin <5 = T C0s -5 Sin

dar .
T CcOoS 9+Esm [’}

Thus (y+x)3—z=y—x becomes (rsinf + rcos @) =rsinf —rcos6

. dr
—rsin 6+@ cos @

Thatis (sin 8 + cos9) (r cos b + Z—;sin 9) = (sin8 — cos 9) (—r sin 6 +Z—;cos 9)
asr>0, r+0

Multiplying out and collecting like terms gives

dr
r(cos? 8 + sin? ) + E(sin2 0+ cos?6) =0

whichis 7 +2=10 . M1A1* (7)
6, 9r 6 _

So re +dee 0 [\

and thus re? =k , Al

r=ke? Al

- .
\J

G1(4)

(or alternatively f%dr = [—df M1so In|r| = —6 +c Alandhencer = ke™? A1)

(i) (y+x—x(?+y2) 2=y —x—y&?+y?)

dr .
T Ccos 9+ﬁsm %]

. dr
—rsin 9+E cos 6

becomes (rsin@ +rcos@ —r3 cos8) =rsinf —rcos@ —r3sinf

that is

("

(sin@ + cos 8 — r? cos 6) (rcose +Z—;sin6) = (sin@ — cos O — r? sin 6) (—rsinH +Z—;cost9)



Multiplying out and collecting like terms gives
r(cos? 0 + sin? @ — r2(cos? 6 + sin? §)) + %(sin2 6+ cos260) =0 M1

which is r—r3+Z—;=0. Al

[—=—dr=[do

r3—r

1 1 1
) dr = f—r(rz—l) dr = f—r(r—l)(r+1) dr = [d@ M1

r3—r

1/2 -1 1/2
So [df=["2+—+—"2dr Al
r—1 T r+1
1 (r-1)(r+1)
0+k= Eln —Z| Al
So
r2—1
— .26
2 =Ce
with C >0
1
2 =
T T 1T Ce?0
that is
rz ; A1*

T 1+4e20

j A ‘j A

N

ER

A<« © A=0

G1G1G1(9)




9. If the initial position of P is , then at time t , OP? = a? + x?, so conserving energy,

%mv2 = lma‘cz +i(\/a2 + x2 — a)z

2 2a
M1Al1Al
Thus,
A 2
x? =v? ——(\/az + x2% — a)
ma
M1
i.e.
2
x? =v? —k? (\/a2 + x2 —a)
Al* (5)
The greatest value, x, , attained by x , occurs when x = 0. M1

Thus v2 = kz(w/a2 + x9% — a)2

So Ja?+xy2—a= % (negative root discounted as all quantities are positive)

Thus
v 2 v?¢ 2av
2 _ (2 2= o
Xo© = (k-+-a) a 2 X
and
M1 A1 (3)
As

x? =v? —k? (\/az + x2 —a)2

differentiating with respectto t

1 -1
2xx% = —2k? (\/ a? + x% — a) > (a? + x2) 2 2xx
M1 A1l

Thus
(\/a2 + x2 — a)
= —xk?
va? + x2

P

Al



So when x = x,, the acceleration of P is

v v
X v2 2av % kvVv2 + 2akv
+

_xokz =— |—=+ kZ

v k2 k v v+ ak
& +a & a
M1 A1 (5)
5 1
X = [vz —kz(\/a2+x2 —a) ]
That is
1
dx 212
B[ - (Vv —a)]
dt
and thus
T/4 X0 1
f dt = I dx
-
o0 [V r i —a)
where T is the period. M1 A1
So
Xo
1
T=4 Tdx
-
0 [vz - kz(\/a2 +x2 — a) ]2
4 1
T= ; f 1 dx
-
0 kz(\/a2+x2—a) 2
1- 2
Let
5 k(\/a2 + x2 — a)
u =
v
B1
then
vu? 2
a?+x% = <T + a)
and so

5 v? u* 4+ 2kavu?
X4 =
k2




as v K< ka

Thus

and so

as required.

u v u
X = \/Zkav—(l +—u2) ~ V2kav—

M1A1

M1 A1* (7)



10. The position vector of the upper particle is

(x+asin9>
y+acosf

B1B1

so differentiating with respect to time, its velocity is

<x + aBcos 9)
y — a @sin 6
E1* (3)

Its acceleration, by differentiating with respect to time, is thus

(5c' + aBcos @ — ab? sin 9)
y —aBsinf — ab? cos
M1 A1 A1l

so by Newton’s second law resolving horizontally and vertically

( —Tsin@ ): (5&+aécos€—aézsin6)
~T cos @ —mg j —aBsinf — ah?cos @
M1A1

That is

m(ﬁc‘+aécos€—aézsin9> _ _T(sine)_m (0)
j —aBsin® — ah? cos O g

cos 6 1

The other particle’s equation is

(56 — aBcos B + ab?sin 0) _ (sin 9) —myg (0)

m y + a 8sin 6 + ab? cos 6 cos 6 1
B1 (6)
Adding these two equations we find
X\ _ 0
am (y) =—2mg ()
ie. X=0and y =—g M1 A1*

Thus
o - .
m( aue.cost9+q9 sm@):T(smG)
a Bsin 0 + af? cos 6 cos 6

i.e. m(—a0Bcos6 +ab?sinf) =Tsind and m(absin@ + ad? cos@) = T cos

Multiplying the second of these by sin 8 and the first by cos 6 and subtracting,



mad =0 andso 6=0. M1A1* (4)

u

Thus 6 = a constant and as initially 200 =u, 6 = %a M1 A1l
Therefore the time to rotate by %n is given by 76 = %n ,S0T = %n = % = % Al

As y = —g andinitially y = v, attime ,y =v —gt,andso y = vt — %gtz + h asthe centre of
the rod is initially h above the table. M1 A1l

Hence, given the condition that the particles hit the table simultaneously,
0 =vma/u—1/2 g(mra/u)?+h

Hence 0 = 2muva —m2a?g + 2hu?, or 2hu? = n%2a%g — 2muva asrequired. M1 A1* (7)



11. (i) Suppose that the force exerted by P on the rod has components X perpendicular to the rod
and Y parallel to the rod. Then taking moments for the rod about the hinge, Xd = 0, M1

which as d # 0 yields X = 0 and hence the force exerted on the rod by P is parallel to the rod.
Al* (2)

Resolving perpendicular to the rod for P, mgsina = m(r — d sina)w? cos a M1 A1l
. e ge 2 g _ .
Dividing by mw* sina, = (r —dsina) cota
Thatis a = rcota —dcosa orin other words rcota = a + d cosa as required. M1 A1* (4)

The force exerted by the hinge on the rod is along the rod towards P, B1
and if that force is F , then resolving vertically for P, Fcosa =mg M1A1

so F=mgseca. Al (4)

(ii) Suppose that the force exerted by m; on the rod has component X; perpendicular to the rod
towards the axis, that the force exerted by m, on the rod has component X, perpendicular to the
rod towards the axis, B1

then resolving perpendicular to the rod for m; , m;gsinf + X; = m;(r — d; sin B)w? cos 8
M1A1

and similarly for m, , m,gsinf + X, = m,(r — d, sin B)w? cos B

M1A1

Taking moments for the rod about the hinge, X;d; + X,d, =0 M1A1
So multiplying the first equation by d; , the second by d, and adding we have

my g dysin B +myd,gsin B = myd,(r — dy sin B)w? cos B + m,d,(r — d, sin B)w? cos B

2 2
Dividing by (m, d; +m,d,)w?sinf, % =rcotf — (M) cos 8 M1A1

mq dl +m, dz

2 2
Thatis rcotff =a+ bcosf,where b = mdy tmgdy Al (10)

mq dl +m, dz



12. (i) The probability distribution function of S is

S, 1 2 3 4 5 6
p 1/6 1/6 1/6 1/6 1/6 1/6
so the probability distribution function of R; is
R, 0 1 2 3 4 5
p 1/6 1/6 1/6 1/6 1/6 1/6
and thus G(x) = %(1+t+t2+t3+t4+t5). B1
The probability distribution function of S, is
S, 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 5 4 3 2 1
p /36 /36 /36 /36 /36 /36 /36 /36 /36 /36 /36
M1
so the probability distribution function of R, is
R, 0 1 2 3 4 5
6 6 6 6 6 6
P /36 /36 /36 /36 /36 /36

Al

which is the same as for R, and hence its probability generating function isalso G(x). Al*

Therefore, the probability generating function of R, is also G(x) B1
and thus the probability that S, is divisible by 6 is 1/6 . B1(6)
(ii) The probability distribution function of T is

T; 0 1 2 3 4

P Y6 */6 e e e




and thus G;(x) = i(l +2x +x% +x3 +x%) M1 A1

G,(x) would be (Gl(x))2 except that the powers must be multiplied congruent to modulus 5.
G,(x) = %(1+2x+x2 +x3 +x%) =§(x+1+x+x2 + x3 +x%) =%(x+y) Bl
Thus G,(x) would be 3—16(x + y)?

except xy =x(1+x+x?2+x3+xH)=x+x2+x3+x*+1=y M1A1

and Y2 =(1+x+x2+x3+xNA +x+x2+x3+x)=AQ+x+x?>+x3+xH +
c+x?2+x3+x* + D+ 2 +x3 +x* +1+0)+ 3 +x* +1+x+x)+ (P +1+x +
x% +x3) =5y Al

So G,(x) = %(x +y)% = %(x2 + 2xy + y?) = % (x2+2y+5y) = 3—16 (x2+7y) MI1A1* (8)

1 3 _ 1 2 1 3 2 2
G3(x) = g(x +y)° = g(x +y)(x*+7y) = g(x + yx*+ 7xy + 7y°)
That is
1 3 2 2 13 1 3
G3(x) =5(x +yx* + 7xy + 7y*) =§(x +y+ 7y +35y) =5(x + 43y)
We notice that the coefficient of y inside the bracketin G,(x)is (1 +6 + 62 +---6""1)

This can be shown simply by induction. It is true for n = 1 trivially.

Consider (x +)(x"+ (1+6+ 62+ +651)y)=x"" +yx" + (1+ 6+ 62 + - +65 V)xy +
(1+6+62+-+6k71)y2

yx"+ (1+6+6%+6KDxy+ (1+6+ 6%+ +6571)y?
=y+(1+6+62++65)y+5(1+6+6%+--+651)y

5(1464+6%+-651)=(6-1(1+6+6%+681)=6F—1
Soy+(1+6+62++651)y+5(1+6+62+-+651)y=(1+6+6%+-6")y
as required. M1

n_
However, this coefficient is the sum of a GP and so G, (x) = Gin (xn‘SP + 6—51y) where p isan

integer suchthat 0 <n—-5p <4. M1 A1

So if n is not divisible by 5, the probability that S,, is divisible by 5 will be the coefficient of x°

n_
which in turn is the coefficient of y , namely = (6 z 1) = %(1 - 6%) as required. B1*

6n

If n is divisible by 5, the probability that S, is divisible by 5 will be 6in(l + GnT_l) as x™oP = x0



. 1 4
Thatis (1 + G—n) M1A1 (6)



13. (i)

\.i A

N

KT ¢
G1

P(X+Y<t)=%t2ifOStS1 B1

\} A

N\

y S i-’-' (‘]:-l) =2-t

/

|/ // ,TV
'@-}Q\

) %

G1

andP(X+Y<t)=1—%(2—t)2 ifl<t<?2 B1

PX+Y<t)=0ift<0and PX+Y<t)=1ift>2

( 0 fort<0

22 foro<t<1
_ 2
SoF(t)—% )
|1_5(2_t)2 fori<t<2

1fort>2

B1 (5)

Thus P(X+V) <) =P(X+¥>)=1-P(X+V¥ <)

1_ﬁ for1<t
)1 1\2 1
= E(Z—?) for -<t<1
l 1
0fort<5
M1 Al

Soas f(t) :dl;—(tt),



1
0 t<-—
for >
1 1 1
f(t)=$t—2(2—?) for 3<t<1
1
t t—3f0r1§t

as required. M1A1* (4)

1

1 (o]
v = 23 -3¢ = “191 4 [ 1700
E () 1ft(Zt t )dt+ft.t dt = [2Int+ ¢ + [~¢1]2

= 1 2
2

1

M1 A1 (2)

1
P(Y ) EtforOSt£1

1
1—515_1 fort>1

B1(2)

1/1 1
1—5(;—1) for S st=<1
1/1 -1 1
E(?_l) forOSt<E

F(t) =

1 1
S@—t™) forgst<1
F(t) =

1( t) O<t<1
2\1 -t for 0 =< 2



M1A1

dF (t)

Soas f(t) =

1, 1
—t fOT'EStSl

fO =4, "2 1
E(1—1:)‘2 forOSt<§
M1A1 (4)
E (ﬁ) = % because, by symmetry, E (Xxj) =E (ﬁ)
and £ (7i7) +E (5iy) = E (o) = ED =1 .

N[~

1

X 1 1
E(x+Y) fzt(l t) dt+ft><2t dt

0 1
2

as required. M1A1 (3)
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