## **STEP 2014, P2, Q5 - Solution** (2 pages; 30/6/20)

$$y = xu \Rightarrow \frac{dy}{dx} = u + x\frac{du}{dx}$$

(i) With 
$$y = xu$$
,  $\frac{dy}{dx} = \frac{2y+x}{y-2x} \Rightarrow u + x \frac{du}{dx} = \frac{2xu+x}{xu-2x} = \frac{2u+1}{u-2}$ 

$$\Rightarrow x \frac{du}{dx} = \frac{2u+1}{u-2} - u = \frac{2u+1-u(u-2)}{u-2} = \frac{4u+1-u^2}{u-2}$$

$$\Rightarrow \int \frac{u-2}{4u+1-u^2} du = \int \frac{1}{x} dx$$

$$\Rightarrow \ln|x| = -\frac{1}{2} \int \frac{-2u+4}{4u+1-u^2} du = -\frac{1}{2} \ln|4u+1-u^2| - \ln C$$

[without loss of generality, as *lnC* can take any value]

$$\Rightarrow C|x| = |4u + 1 - u^2|^{-\frac{1}{2}}$$

$$\Rightarrow C^2 x^2 = \frac{1}{|4u+1-u^2|}$$
 (A)

As sol'n passes through (1,1),  $C^2 = \frac{1}{|4+1-1|} = \frac{1}{4}$ 

So  $x^2(4u + 1 - u^2) = 4$  (in order for the curve to pass through (1,1))

and hence 
$$x^2(\frac{4y}{x} + 1 - \frac{y^2}{x^2}) = 4$$

$$\Rightarrow 4xy + x^2 - y^2 = 4$$

or 
$$x^2 - y^2 + 4xy - 4 = 0$$

(ii) Let 
$$x = X + a \& y = Y + b$$
,

so that 
$$\frac{x-2y-4}{2x+y-3} = \frac{X+a-2(Y+b)-4}{2(X+a)+Y+b-3}$$

Then set 
$$a - 2b - 4 = 0 \& 2a + b - 3 = 0$$
,

so that 
$$2(2b+4)+b-3=0$$
;  $5b=-5$ ;  $b=-1$ ;  $a=2$ 

Then 
$$\frac{dy}{dx} = \frac{x-2y-4}{2x+y-3} \Rightarrow \frac{dY}{dX} = \frac{X-2Y}{2X+Y}$$
 or  $\frac{dX}{dY} = \frac{2X+Y}{X-2Y}$ ,

which is the differential eq'n in (i), with X in place of y and Y in place of x.

So, from (A) in (i), 
$$C^2Y^2 = \frac{1}{|4U+1-U^2|}$$
, where  $X = YU$ 

When 
$$x = 1$$
,  $X = 1 - 2 = -1$ ,

and when 
$$y = 1$$
,  $Y = 1 - (-1) = 2$ 

Hence 
$$C^2(4) = \frac{1}{|4(-\frac{1}{2})+1-(-\frac{1}{2})^2|} = \frac{1}{|-2+1-\frac{1}{4}|} = \frac{1}{(\frac{5}{4})}$$

and so 
$$C^2 = \frac{1}{5}$$
, giving  $Y^2 = \frac{5}{-(4U+1-U^2)}$ 

(in order for the curve to pass through (1, 1))

and so 
$$(y+1)^2 = \frac{5}{-(4(\frac{x-2}{y+1})+1-(\frac{x-2}{y+1})^2)}$$

$$= \frac{5(y+1)^2}{-4(x-2)(y+1)-(y+1)^2+(x-2)^2}$$

$$\Rightarrow (y+1)^2(-4xy-4x+8y+8-y^2-2y-1+x^2-4x+4)$$

$$=5(y+1)^2$$

$$\Rightarrow (y+1)^2(-4xy - 8x + 6y + 6 - y^2 + x^2) = 0$$

or 
$$(y+1)^2(x^2-y^2-8x+6y-4xy+6)=0$$