STEP 2014, P1, Q9 - Solution (2 pages; 13/11/19)

From ' $v=u+a t^{\prime}$ vertically (upwards), $0=U \sin \theta+(-g) T_{H}$
$\Rightarrow T_{H}=\frac{U \sin \theta}{g}$
From's $=u t+\frac{1}{2} a t^{2 \prime}, 0=U \sin \theta \cdot T_{L}+\frac{1}{2}(-g) T_{L}{ }^{2}$
$\Rightarrow T_{L}=\frac{2 U \sin \theta}{g}$

Note that $\frac{T_{H}}{T}=\frac{U \sin \theta / g}{U \cos \theta /(k g)}=k \tan \theta$
Also, $T=\frac{U \cos \theta}{k g} \Rightarrow k g T=U \cos \theta \Rightarrow U \cos \theta-k g T=0$,
so that time T is when the horizontal component of the speed is zero; ie when the particle turns round horizontally.

When $k \tan \theta<\frac{1}{2}, \frac{T_{H}}{T}<\frac{1}{2}$, so that $T>2 T_{H}=T_{L}$
ie the particle turns round horizontally after it has hit the ground (see sketch below)

When $\operatorname{ktan} \theta>1, \frac{T_{H}}{T}>1$, so that $T<T_{H}$
ie the particle turns round horizontally before it has reached its greatest height (see sketch below)

When $\frac{1}{2}<k \tan \theta<1, T<T_{L}$ and $T>T_{H}$
and the particle turns round horizontally after reaching its greatest height, but before it hits the ground (see sketch below)

[The remaining part is by no means obvious. We are expecting $T=T_{H}$, as well as $\left.T<T_{L}\right]$

When $k \tan \theta=1, k=\frac{\cos \theta}{\sin \theta}$,
so that $\frac{s_{y}}{s_{x}}=\frac{U \sin \theta t-\frac{1}{2} g t^{2}}{U \cos \theta t-\frac{1}{2} k g t^{2}}=\frac{\sin \theta\left(U \sin \theta t-\frac{1}{2} g t^{2}\right)}{\cos \theta\left(U \sin \theta t-\frac{1}{2} g t^{2}\right)}=\tan \theta$,
so that the particle continues to travel in a straight line, at an angle of θ to the horizontal, until it reaches its greatest height, when it returns along the same line (see sketch below)

