STEP 2014, P1, Q3 - Solution (3 pages; 8/11/19)
(i) $\left[\frac{1}{3} x^{3}\right]_{0}^{b}=\left(\left[\frac{1}{2} x^{2}\right]_{0}^{b}\right)^{2} \Rightarrow \frac{b^{3}}{3}=\left(\frac{b^{2}}{2}\right)^{2}$
$\Rightarrow 4 b^{3}-3 b^{4}=0 \Rightarrow 3 b-4=0($ as $b \neq 0) \Rightarrow b=\frac{4}{3}$
(ii) $a=1 \Rightarrow\left[\frac{1}{3} x^{3}\right]_{1}^{b}=\left(\left[\frac{1}{2} x^{2}\right]_{1}^{b}\right)^{2} \Rightarrow \frac{1}{3}\left(b^{3}-1\right)=\frac{1}{4}\left(b^{2}-1\right)^{2}$
$\Rightarrow 4 b^{3}-4=3\left(b^{4}-2 b^{2}+1\right)$
$\Rightarrow 3 b^{4}-4 b^{3}-6 b^{2}+7=0$; say $f(b)=0$
We can look for a factorisation, and from the first and last terms of the cubic it would have to be of the form
$3 b^{4}-4 b^{3}-6 b^{2}+7=(b-1)\left(3 b^{3}+A b^{2}+B b-7\right)$
To verify this, applying the Factor theorem,
$f(1)=3-4-6+7=0$
[Also, as the official sol'n points out, the two integrals would both be zero when $a=b$, so that $a=b=1$ must be a solution.]

Then equating coefficients of b^{3} gives $-4=A-3$, so that $A=-1$; and equating coefficients of b^{2} gives $-6=B-A$, so that $B=-7$.

Thus $f(b)=(b-1)\left(3 b^{3}-b^{2}-7 b-7\right)$,
and as $b>a=1, f(b)=0 \Rightarrow 3 b^{3}-b^{2}-7 b-7=0$, as required.

To establish that there is only one real root of the cubic:
Write $g(b)=3 b^{3}-b^{2}-7 b-7$
Consider the turning points of the graph:
$g^{\prime}(b)=0 \Rightarrow 9 b^{2}-2 b-7=0$
$\Rightarrow(9 b+7)(b-1)=0 \Rightarrow b=-\frac{7}{9}$ or 1
Then $g(1)=3-1-7-7<0$
There will only be one real root if both turning points lie below the x-axis.
$g\left(-\frac{7}{9}\right)=-3\left(\frac{7}{9}\right)^{3}-\left(\frac{7}{9}\right)^{2}+7\left(\frac{7}{9}\right)-7$
$=-3\left(\frac{7}{9}\right)^{3}-\left(\frac{7}{9}\right)^{2}-7\left(\frac{2}{9}\right)<0$
Thus there is only one real root.

[To aid with sketching, cubics have rotational symmetry about their point of inflexion, which is halfway between the turning points. See Pure/Graphs/"Cubic Functions"]

Then $g(2)=24-4-14-7=-1<0$
and $g(3)=81-9-21-7=44>0$,
so that the root lies between 2 and 3 .
(iii)) $\left[\frac{1}{3} x^{3}\right]_{a}^{b}=\left(\left[\frac{1}{2} x^{2}\right]_{a}^{b}\right)^{2} \Rightarrow \frac{1}{3}\left(b^{3}-a^{3}\right)=\frac{1}{4}\left(b^{2}-a^{2}\right)^{2}$
$\Rightarrow 4(b-a)\left(b^{2}+a b+a^{2}\right)=3(b-a)^{2}(b+a)^{2}$
Now $p^{2}=b^{2}+a^{2}+2 a b$ and $q^{2}=b^{2}+a^{2}-2 a b$,
so that $p^{2}-q^{2}=4 a b$ and $p^{2}+q^{2}=2\left(b^{2}+a^{2}\right)$
Then $(1) \Rightarrow 2\left(p^{2}+q^{2}\right)+\left(p^{2}-q^{2}\right)=3 q p^{2}($ as $b-a \neq 0)$
$\Rightarrow 3 p^{2}+q^{2}=3 p^{2} q$, as required.

Then $3 p^{2}(1-q)=-q^{2}$, so that $p^{2}=\frac{q^{2}}{3(q-1)}$, provided $q \neq 1$ If $q=1$, then $3 p^{2}+q^{2}=3 p^{2} q \Rightarrow 3 p^{2}+1=3 p^{2}$, which is impossible.

As $b>a \geq 0, p=b+a \neq 0$
So $p^{2}>0$, and then $p^{2}=\frac{q^{2}}{3(q-1)} \Rightarrow q>1$.
From (1), dividing by $b-a=q>0$,
$\frac{4}{3}=\frac{q\left(b^{2}+a^{2}+2 a b\right)}{b^{2}+a^{2}+a b} \geq q($ as $a \geq 0, b>0)$
Thus, $1<b-a \leq \frac{4}{3}$, as required.

