STEP 2013, P3, Q6 - Solution (3 pages; 20/7/20)

Referring to the diagram, |z-w|=WZ, which is no longer than WO+OZ=|w|+|z|; ie $|z-w|\leq |z|+|w|$

(i) 1st part

$$|z - w|^{2} = (z - w)(z - w)^{*}$$

$$= (z - w)(z^{*} - w^{*})$$

$$= zz^{*} - zw^{*} - wz^{*} + ww^{*}$$

$$= |z|^{2} - (E - 2|zw|) + |w|^{2}$$

$$= |z|^{2} + 2|zw| + |w|^{2} - E$$

$$= (|z| + |w|)^{2} - E, \text{ as required.}$$

2nd part

As
$$|z|$$
, $|w| \& |z - w|$ are all real,
$$E = (|z| + |w|)^2 - |z - w|^2$$
 is real, as required.

3rd part

From the initial result, $|z - w| \le |z| + |w|$

$$\Rightarrow |z - w|^2 \le (|z| + |w|)^2$$

$$\Rightarrow E = (|z| + |w|)^2 - |z - w|^2 \ge 0$$
, as required.

(ii) 1st part

Equivalent result to prove: $(1 + |zw|)^2 - |1 - zw^*|^2 = E$

LHS =
$$1 + 2|zw| + |zw|^2 - (1 - zw^*)(1 - zw^*)^*$$

$$= 1 + 2|zw| + |z|^2|w|^2 - (1 - zw^*)(1 - z^*w)$$

$$= 1 + 2|zw| + |z|^2|w|^2 - (1 - z^*w - zw^* + zw^*z^*w)$$

$$= 2|zw| + z^*w + zw^*$$
 (as $zw^*z^*w = zz^*ww^* = |z|^2|w|^2$)

= E, as required.

2nd part

From (i) & (ii),

$$|z-w|^2 = (|z|+|w|)^2 - E$$
 and $|1-zw^*|^2 = (1+|zw|)^2 - E$,

and hence
$$\frac{|z-w|^2}{|1-zw^*|^2} = \frac{(|z|+|w|)^2-E}{(1+|zw|)^2-E}$$
 (A)

Result to prove: For a, b, c, a - c, b - c > 0, $\frac{a - c}{b - c} < \frac{a}{b}$ (B), under certain circumstances.

Proof

(B)
$$\Leftrightarrow ab - cb < ab - ac$$
, as $b > 0 \& b - c > 0$

$$\Leftrightarrow b > a$$
, as $c > 0$

So
$$\frac{a-c}{b-c} < \frac{a}{b}$$
 when $a, b, c, a-c, b-c, b-a > 0$

Then, applying the above result to (A):

$$\frac{|z-w|^2}{|1-zw^*|^2} = \frac{(|z|+|w|)^2 - E}{(1+|zw|)^2 - E} < \frac{(|z|+|w|)^2}{(1+|zw|)^2}$$
 (C), if $E > 0$, provided that

$$(|z| + |w|)^2 < (1 + |zw|)^2$$
 (D)

(as
$$|z - w|^2$$
, $|1 - zw^*|^2$, $(|z| + |w|)^2 - E & (1 + |zw|)^2 - E > 0$)

and (D) will be true if |z| + |w| < 1 + |zw| (F)

$$(F) \Leftrightarrow 1 + |z||w| - |z| - |w| > 0$$

$$\Leftrightarrow |z|(|w|-1) + (1-|w|) > 0$$

$$\Leftrightarrow (1 - |z|)(1 - |w|) > 0$$
 (G)

and (G) holds, as 1 - |z| < 0 & 1 - |w| < 0

So (C) holds if
$$E > 0$$
, and if $E = 0$, $\frac{|z-w|^2}{|1-zw^*|^2} = \frac{(|z|+|w|)^2}{(1+|zw|)^2}$

Hence,
$$\frac{|z-w|^2}{|1-zw^*|^2} \le \frac{(|z|+|w|)^2}{(1+|zw|)^2}$$
 (H)

3rd part

If both |z| < 1 & |w| < 1, then (G) also holds, and hence (H) does.