STEP 2013, Paper 1, Q10 - Solution (2 pages; 22/5/18)

By the work-energy principle, $\frac{1}{2} m v_{i}{ }^{2}-\frac{1}{2} m V_{i}{ }^{2}=\mu m g d$,
where m is the mass of he puck, V_{i} is the speed just before colliding with the wall, and $\mu m g d$ is the work done against friction as the puck travels between the two barriers (since the normal reaction is mg).
[The official sol'n uses the suvat eq'n $v^{2}=u^{2}+2 a s$, which is closely related to the above.]

And $v_{i+1}=r V_{i}$, so that $v_{i}{ }^{2}-\left(\frac{v_{i+1}}{r}\right)^{2}=2 \mu g d$
and hence $v_{i+1}{ }^{2}-r^{2} v_{i}{ }^{2}=-2 r^{2} \mu g d$, as required.
Then $v_{i+2}{ }^{2}-r^{2} v_{i+1}{ }^{2}=-2 r^{2} \mu g d$
... $v_{i+n}{ }^{2}-r^{2} v_{i+n-1}{ }^{2}=-2 r^{2} \mu g d$
Then, multiplying each row by the appropriate power of r^{2}, so that the intermediate terms cancel, and adding gives:

$$
\begin{equation*}
v_{i+n}^{2}-\left(r^{2}\right)^{n-1} r^{2} v_{i}^{2}=-2 r^{2} \mu g d\left(1+r^{2}+\cdots+\left(r^{2}\right)^{n-1}\right) \tag{A}
\end{equation*}
$$

With $v_{i}=v \& v_{i+n}=0\left(v_{i+n}\right.$ is the speed just after the $n t h$ collision, but as it equals 0 it will also be the speed just before the $n t h$ collision),

$$
\begin{aligned}
& \left(r^{2}\right)^{n} v^{2}=2 r^{2} \mu g d \frac{\left(1-\left(r^{2}\right)^{n}\right)}{1-r^{2}} \\
& \Rightarrow\left(r^{2}\right)^{n-1} \frac{v^{2}}{2 \mu g d}=\frac{\left(1-r^{2 n}\right)}{1-r^{2}}
\end{aligned}
$$

Writing $\lambda=r^{2}$ for the moment, $\lambda^{n-1} k(1-\lambda)=1-\lambda^{n}$,
so that $\lambda^{n-1}\{k(1-\lambda)+\lambda\}=1$
$\Rightarrow \lambda^{n-1}=(k(1-\lambda)+\lambda)^{-1}$
$\Rightarrow(n-1) \ln \lambda=-\ln (k(1-\lambda)+\lambda)$
$\Rightarrow n=1-\frac{\ln (k(1-\lambda)+\lambda)}{\ln \lambda}$
$\Rightarrow n=\frac{\ln \lambda-\ln (k(1-\lambda)+\lambda)}{\ln \lambda}$
[since the question gives n when $r=e^{-1}$ as a single term]
$\Rightarrow n=\frac{\ln \left(\frac{\lambda}{k(1-\lambda)+\lambda}\right)}{\ln \lambda}=\frac{\ln \left(\frac{r^{2}}{k\left(1-r^{2}\right)+r^{2}}\right)}{2 \ln r}$
When $r=e^{-1}, n=\frac{\ln \left(\frac{e^{-2}}{k\left(1-e^{-2}\right)+e^{-2}}\right)}{-2}$
$=\frac{1}{2} \ln \left(\frac{k\left(1-e^{-2}\right)+e^{-2}}{e^{-2}}\right)=\frac{1}{2} \ln \left(k\left(e^{2}-1\right)+1\right)$, giving the required answer.

When $r=1$, (A) becomes
$v_{i+n}{ }^{2}-v_{i}{ }^{2}=-2 \mu g d n$ (A)
so that $0-v^{2}=-2 \mu g d n$
and hence $n=\frac{v^{2}}{2 \mu g d}=k$

