STEP 2012, Paper 3, Q9 - Solution (2 pages; 16/7/18)
(i)

N2L for the two particles gives:
$m_{1} g-T_{1}=m_{1} a$ (1) \& $T_{2}-m_{2} g=m_{2} a$
(with obvious notation [which unfortunately would have to be defined in the exam])
[As the contact between the string and the pulley is rough, there is a frictional force (F) on the string. Considering the forces on the string, $T_{1}-T_{2}-F=m a$, where m, the mass of the string, is negligible, so that $T_{1}=T_{2}+F$; ie $T_{1} \neq T_{2}$. In A Level questions, without this friction, the assumption is made that $T_{1}=T_{2}$.]

For the pulley, total moments of external forces about $0=I \ddot{\theta}$, so that $T_{1} r-T_{2} r=I\left(\frac{a}{r}\right) \Rightarrow T_{1}-T_{2}=I\left(\frac{a}{r^{2}}\right)$
[$\dot{\theta}=\frac{v}{r}$, so that $\ddot{\theta}=\frac{a}{r}$]
Also, resolving vertically for the pulley:
$P+M g=T_{1}+T_{2}+M g \Rightarrow P=T_{1}+T_{2}$
(3) $\Rightarrow I=\frac{r^{2}}{a}\left(T_{1}-T_{2}\right)$
(1) $\Rightarrow T_{1}=m_{1}(g-a)$
(2) $\Rightarrow T_{2}=m_{2}(g+a)$
(4), (6), (7) $\Rightarrow P=\left(m_{1}+m_{2}\right) g+a\left(m_{2}-m_{1}\right)$
$\Rightarrow a=\frac{P-\left(m_{1}+m_{2}\right) g}{m_{2}-m_{1}}$
(5), (6), (7) $\Rightarrow I=\frac{r^{2}}{a}\left(g\left(m_{1}-m_{2}\right)-a\left(m_{1}+m_{2}\right)\right)$

Then, from (8):
$I=-\frac{r^{2} g\left(m_{1}-m_{2}\right)^{2}}{P-\left(m_{1}+m_{2}\right) g}-r^{2}\left(m_{1}+m_{2}\right)$
$=\frac{r^{2}\left\{g\left(m_{1}-m_{2}\right)^{2}-\left(m_{1}+m_{2}\right)\left[\left(m_{1}+m_{2}\right) g-P\right]\right\}}{\left(m_{1}+m_{2}\right) g-P}$
$=\frac{r^{2}\left\{\left(m_{1}+m_{2}\right) P+g\left[\left(m_{1}-m_{2}\right)^{2}-\left(m_{1}+m_{2}\right)^{2}\right]\right\}}{\left(m_{1}+m_{2}\right) g-P}$
$=\frac{r^{2}\left\{\left(m_{1}+m_{2}\right) P-4 m_{1} m_{2} g\right\}}{\left(m_{1}+m_{2}\right) g-P}$, as required
(ii) Let $I_{0} \& I_{1}$ be the old and new moments of inertia.

The only change is that equation (3) becomes
$\left(T_{1}-T_{2}\right) r-C=I_{1}\left(\frac{a}{r}\right)$, as friction opposes motion
Then, since $\left(T_{1}-T_{2}\right) r=I_{0}\left(\frac{a}{r}\right)$,
$I_{1}=\left\{I_{0}\left(\frac{a}{r}\right)-C\right\}\left(\frac{r}{a}\right)=I_{0}-\frac{C r}{a}$
ie the new moment of inertia is smaller than the old value.
From (9), as $I_{1}>0, C<\left(T_{1}-T_{2}\right) r=m_{1}(g-a) r-m_{2}(g+a) r$
$=\left(m_{1}-m_{2}\right) r g-\operatorname{ar}\left(m_{1}-m_{2}\right)<\left(m_{1}-m_{2}\right) r g$, as required (as $m_{1}>m_{2} \& a>0$)

