STEP 2012, Paper 3, Q9 – Solution (2 pages; 16/7/18)

(i)

N2L for the two particles gives:

 $m_1g - T_1 = m_1a$ (1) & $T_2 - m_2g = m_2a$ (2)

(with obvious notation [which unfortunately would have to be defined in the exam])

[As the contact between the string and the pulley is rough, there is a frictional force (*F*) on the string. Considering the forces on the string, $T_1 - T_2 - F = ma$, where *m*, the mass of the string, is negligible, so that $T_1 = T_2 + F$; ie $T_1 \neq T_2$. In A Level questions, without this friction, the assumption is made that $T_1 = T_2$.]

For the pulley, total moments of external forces about $O = I\ddot{\theta}$,

so that
$$T_1 r - T_2 r = I\left(\frac{a}{r}\right) \Rightarrow T_1 - T_2 = I\left(\frac{a}{r^2}\right)$$
 (3)
 $[\dot{\theta} = \frac{v}{r}, \text{ so that } \ddot{\theta} = \frac{a}{r}]$

Also, resolving vertically for the pulley:

$$P + Mg = T_1 + T_2 + Mg \Rightarrow P = T_1 + T_2 \quad (4)$$

$$(3) \Rightarrow I = \frac{r^2}{a} (T_1 - T_2) (5)$$

$$(1) \Rightarrow T_{1} = m_{1}(g - a) \quad (6)$$

$$(2) \Rightarrow T_{2} = m_{2}(g + a) \quad (7)$$

$$(4), (6), (7) \Rightarrow P = (m_{1} + m_{2})g + a(m_{2} - m_{1})$$

$$\Rightarrow a = \frac{P - (m_{1} + m_{2})g}{m_{2} - m_{1}} \quad (8)$$

$$(5), (6), (7) \Rightarrow I = \frac{r^{2}}{a} \left(g(m_{1} - m_{2}) - a(m_{1} + m_{2}) \right)$$

Then, from (8):

$$I = -\frac{r^2 g(m_1 - m_2)^2}{P - (m_1 + m_2)g} - r^2 (m_1 + m_2)$$

= $\frac{r^2 \{g(m_1 - m_2)^2 - (m_1 + m_2)[(m_1 + m_2)g - P]\}}{(m_1 + m_2)g - P}$
= $\frac{r^2 \{(m_1 + m_2)P + g[(m_1 - m_2)^2 - (m_1 + m_2)^2]\}}{(m_1 + m_2)g - P}$
= $\frac{r^2 \{(m_1 + m_2)P - 4m_1m_2g\}}{(m_1 + m_2)g - P}$, as required

(ii) Let $I_0 \& I_1$ be the old and new moments of inertia. The only change is that equation (3) becomes

$$(T_1 - T_2)r - C = I_1\left(\frac{a}{r}\right) \text{, as friction opposes motion (9)}$$

Then, since $(T_1 - T_2)r = I_0\left(\frac{a}{r}\right)$,
$$I_1 = \left\{I_0\left(\frac{a}{r}\right) - C\right\}\left(\frac{r}{a}\right) = I_0 - \frac{Cr}{a}$$

ie the new moment of inertia is smaller than the old value.
From (9), as $I_1 > 0$, $C < (T_1 - T_2)r = m_1(g - a)r - m_2(g + a)r$
$$= (m_1 - m_2)rg - ar(m_1 - m_2) < (m_1 - m_2)rg$$
, as required
(as $m_1 > m_2 \& a > 0$)