STEP 2012, Paper 3, Q12 - Solution (2 pages; 16/7/18)
(i)

Area of equilateral triangle $=\frac{1}{2}(\sqrt{2})$
Area also $=$ Area $(\mathrm{ABP})+$ Area $(\mathrm{BCP})+$ Area (CAP)
$=\frac{1}{2}(\sqrt{2}) x_{1}+\frac{1}{2}(\sqrt{2}) x_{2}+\frac{1}{2}(\sqrt{2}) x_{3}$
Hence $1=x_{1}+x_{2}+x_{3}$, as required.

In the diagram, 0 is the centre of mass of the triangle (where the angle bisectors meet).

To find $f(x)$: Without loss of generality, label the diagram so that P lies within the area ABO, as shown below, where $D G=x$.

To find the pdf, consider the cdf, $F(x)=P(X<x)$
$F(x)=P(\mathrm{P}$ lies in $\mathrm{ABFE} \mid \mathrm{P}$ lies in ABO$)$
$=1-P($ P lies in $\mathrm{EFO} \mid \mathrm{P}$ lies in ABO$)$
$=1-\frac{\text { area } \mathrm{EFO}}{\text { area } \mathrm{ABO}}$
EFO and ABO are similar triangles, so that $\frac{\text { area } \mathrm{EFO}}{\text { area } \mathrm{ABO}}=\left(\frac{O G}{O D}\right)^{2}$
$=\left(\frac{\frac{1}{3}-x}{1 / 3}\right)^{2}$
Then $F(x)=1-(1-3 x)^{2}$
and $f(x)=\frac{d}{d x}(F(x))=-2(1-3 x)(-3)=6(1-3 x)$
for $0 \leq x \leq 1 / 3\left(\right.$ as $\left.O D=\frac{1}{3}\right)$
$E(X)=\int_{0}^{1 / 3} x .6(1-3 x) d x=\int_{0}^{1 / 3} 6 x-18 x^{2} d x$
$=\left[3 x^{2}-6 x^{3}\right]_{0}^{1 / 3}=\frac{1}{3}-\frac{2}{9}=\frac{1}{9}$
(iii) We now want the equivalent result for similar volumes, so that $F(x)=1-\left(\frac{\frac{1}{4}-x}{\frac{1}{4}}\right)^{3}=1-(1-4 x)^{3}$

Then $g(x)$ [following the notation of the official sol'ns] $=$
$-3(1-4 x)^{2}(-4)=12(1-4 x)^{2}$
So $E(X)=\int_{0}^{1 / 4} x .12(1-4 x)^{2} d x=\int_{0}^{1 / 4} 12 x-96 x^{2}+192 x^{3} d x$
$=\left[6 x^{2}-32 x^{3}+48 x^{4}\right]_{0}^{1 / 4}=\frac{6}{16}-\frac{32}{64}+\frac{48}{256}=\frac{6-8+3}{16}=\frac{1}{16}$
[In the ER, 'cpf' should be 'cdf' (the 'cumulative distribution function').]

