STEP, 2012, Paper 2, Q9 - Solution (15/7/18; 2 pages)
[This question was very straightforward for STEP; especially STEP 2. The ER mentions that it was the most highly-scoring question in the paper, although only 40% of candidates tackled it (this still counted as 'popular' though). Given the limited theory involved, and the fact that everything is 'show that', it is a very attractive question.]

Let T be the time when the ball is level with the net.
Then $2 h-u \sin \alpha . T-\frac{g}{2} T^{2}>h$ (vertical distance)
and $u \cos \alpha . T=a$ (horiz. distance)
Hence $2 h-\operatorname{atan} \alpha-\frac{g}{2}\left(\frac{a}{u \cos \alpha}\right)^{2}>h$
$\Rightarrow h-\operatorname{atan} \alpha>\frac{g}{2} \cdot \frac{a^{2}}{u^{2} \cos ^{2} \alpha}$
$\Rightarrow \frac{2(h-a \tan \alpha)}{g a^{2} \sec ^{2} \alpha}>\frac{1}{u^{2}}$, as required

Let T_{L} be the time when the ball lands.
Then (vert.) $2 h-u \sin \alpha . T_{L}-\frac{g}{2} \cdot T_{L}{ }^{2}=0$
and (horiz.) $u \cos \alpha . T_{L}<b$
From (1), $T_{L}{ }^{2}+\frac{2 u \sin \alpha T_{L}}{g}-\frac{4 h}{g}=0$
and hence $T_{L}=\frac{-\frac{2 u \sin \alpha}{g}+\sqrt{\frac{4 u^{2} \sin ^{2} \alpha}{g^{2}}+\frac{16 h}{g}}}{2}\left(\right.$ as $\left.T_{L}>0\right)$
Then, from (2), $\frac{b}{u \cos \alpha}>\frac{-u \sin \alpha}{g}+\frac{1}{g} \sqrt{u^{2} \sin ^{2} \alpha+4 h g}$
$\Rightarrow \frac{b g}{u \cos \alpha}+u \sin \alpha>\sqrt{u^{2} \sin ^{2} \alpha+4 g h}$, as required
[initial aim is to eliminate u]
From (B), $u^{2} \sin ^{2} \alpha+4 g h<\frac{b^{2} g^{2}}{u^{2} \cos ^{2} \alpha}+u^{2} \sin ^{2} \alpha+2$ bgtan α
$\Rightarrow 4 g h-2$ bgtan $\alpha<\frac{b^{2} g^{2}}{u^{2} \cos ^{2} \alpha}$
$\Rightarrow \frac{1}{u^{2} \cos ^{2} \alpha}>\frac{4 h-2 b \tan \alpha}{b^{2} g}$
From (A), $\frac{1}{u^{2} \cos ^{2} \alpha}<\frac{2(h-a \tan \alpha)}{g a^{2}}$
(3) $\&(4)$ then $\Rightarrow \frac{2(h-a \tan \alpha)}{g a^{2}}>\frac{4 h-2 b \tan \alpha}{b^{2} g}$
$\Rightarrow b^{2}(h-\operatorname{atan} \alpha)>(2 h-b \tan \alpha) a^{2}$
[it is probably not necessary to point out (here and elsewhere) that we are multiplying by obviously positive quantities, so that the direction of the inequality is not affected]
$\Rightarrow b^{2} h-2 h a^{2}>\tan \alpha\left(a b^{2}-b a^{2}\right)$
$\Rightarrow \tan \alpha<\frac{h\left(b^{2}-2 a^{2}\right)}{a b(b-a)}$, since $b>a$ [this does have to be pointed out], as required

