STEP, 2012, Paper 2, Q5 - Solutions (15/7/18; 4 pages)
(i) $f(x)=\frac{1}{(x-a)^{2}-1}=\frac{1}{(x-a-1)(x-a+1)}$

Vertical asymptotes: $x=a-1 \& x=a+1$
[symmetry about $x=a$]
Sketch for $a>1$ (for other values the graph is just shifted to the left):

(ii) There are now asymptotes at:
$x=a-1, x=a+1, x=b-1 \& x=b+1$ when $b>a+2$
and $x=a-1, x=a+1 \& x=a+3$ when $b=a+2$

[Note that there is symmetry about the midpoint of $a+1 \&$ $b-1$; ie at $\frac{1}{2}(a+b)$; though there is no indication of the position of the two maxima.]

[The repeated factor of $(x-a-1)$ means that the asymptote is approached at the negative end for values on both sides of the asymptote. Again, there is symmetry about $x=a+1$.]

To find the stationary points:

$$
g^{\prime}(x)=-\left[(x-a)^{2}-1\right]^{-2}(2)(x-a)\left[(x-b)^{2}-1\right]^{-1}
$$

$$
\begin{aligned}
& -\left[(x-b)^{2}-1\right]^{-2}(2)(x-b)\left[(x-a)^{2}-1\right]^{-1} \\
= & -2 \frac{(x-a)\left[(x-b)^{2}-1\right]+(x-b)\left[(x-a)^{2}-1\right]}{\left[(x-a)^{2}-1\right]^{2}\left[(x-b)^{2}-1\right]^{2}}
\end{aligned}
$$

$g^{\prime}(x)=0$
$\Rightarrow(x-a)\left[(x-b)^{2}-1\right]+(x-b)\left[(x-a)^{2}-1\right]=0$
[We thus have to solve a cubic. It is a fair bet that it will factorise conveniently, but as an alternative to hoping that an obvious factor will emerge, we can take advantage of symmetry:]

In the more general case when $b>a+2$, the symmetry about $x=\frac{1}{2}(a+b)$ means that this is one of the roots.

This implies a factor of $2 x-a-b$.
From (A),
$(x-a)(x-b)\{x-b+x-a\}-(x-a)-(x-b)=0$
$\Rightarrow(2 x-a-b)\{(x-a)(x-b)-1\}=0$
[H\&A contains a typo in the line "and setting the numerator $=0$...",

$$
" . . .+[x-a+x-b]=0 "
$$

should read "... $-[x-a+x-b]=0$ " $]$
$\Rightarrow(2 x-a-b)\left\{x^{2}-(a+b) x+a b-1\right\}=0$
$\Rightarrow x=\frac{1}{2}(a+b)$ or $\frac{(a+b) \pm \sqrt{(a+b)^{2}-4(a b-1)}}{2}=\frac{a+b \pm \sqrt{(a-b)^{2}+4}}{2}$
[Alternatively, had the cubic been harder to factorise, it would be possible to make the substitution $u=x-\frac{1}{2}(a+b)$, which would then lead to a factor of u (corresponding to a root of $u=0$).]

When $b=a+2, \frac{1}{2}(a+b)=a+1$, but $g(x)$ is not defined for $x=a+1$, so this stationary point can be excluded.

