STEP 2012, Paper 2, Q12 - Solution (15/7/18; 2 pages)
(i) $\mathrm{P}($ sp light on $)=\mathrm{P}(\mathrm{H}$ sp switch on $) \times \mathrm{P}(\mathrm{K}$ sp switch on $)$
$=\left(\mathrm{P}(\mathrm{H}\right.$ switches orig. all on $) \times \frac{3}{4}+\mathrm{P}(\mathrm{H}$ switches orig. all off $\left.) \times \frac{1}{4}\right)$
$\times\left(\mathrm{P}(\mathrm{K} \mathrm{sp}\right.$ switch orig. on $) \times \frac{3}{4}+\mathrm{P}(\mathrm{K} \mathrm{sp}$ switch orig. off $\left.) \times \frac{1}{4}\right)$
$=\left(p \times \frac{3}{4}+(1-p) \times \frac{1}{4}\right)\left(\frac{1}{2} \times \frac{3}{4}+\frac{1}{2} \times \frac{1}{4}\right)$
$=\frac{1}{4}(3 p+1-p)\left(\frac{1}{2}\right)$
$=\frac{2 p+1}{8}$

P(H sp switch pressed \| sp light on)
$=\frac{P(\mathrm{H} \mathrm{sp} \text { switch pressed } \& \mathrm{sp} \text { light on })}{P(\mathrm{sp} \text { light on })}$
$P(\mathrm{H}$ sp switch pressed $\&$ sp light on $)$
$=\mathrm{P}(\mathrm{H}$ sp switch orig. off $) \times \mathrm{P}(\mathrm{H}$ sp switch pressed $)$
$\times \mathrm{P}($ correct K sw pressed $)$
$=(1-p) \times \frac{1}{4} \times \frac{1}{2} \quad\left(\right.$ the factor of $1 / 2$ is the same as the $1 / 2$ in $\left.\left({ }^{*}\right)\right)$

So $\mathrm{P}(\mathrm{H}$ sp switch pressed \mid sp light on $)=\frac{(1-p) \times \frac{1}{8}}{\frac{2 p+1}{8}}=\frac{1-p}{1+2 p}$, as required.
(ii) [This is a very strange and unclear situation. If in doubt, assume the simplest possible interpretation: in this case, that we are dealing with a random variable $\sim B\left(7, \frac{1-p}{1+2 p}\right)$; even though it sounds as though we are considering 7 Mondays in the past.]

Let X be the number of times that the H sp switch was pressed (given that the sp light was on).

Then $X \sim B\left(7, \frac{1-p}{1+2 p}\right)$
It is given that $P(X=2)<P(X=3)$
and $P(X=4)<P(X=3)$, as 3 is the modal value of X
Noting that $1-\left(\frac{1-p}{1+2 p}\right)=\frac{1+2 p-1+p}{1+2 p}=\frac{3 p}{1+2 p}$,
${ }^{7} C_{2}\left(\frac{1-p}{1+2 p}\right)^{2}\left(\frac{3 p}{1+2 p}\right)^{5}<{ }^{7} C_{3}\left(\frac{1-p}{1+2 p}\right)^{3}\left(\frac{3 p}{1+2 p}\right)^{4}$
and ${ }^{7} C_{4}\left(\frac{1-p}{1+2 p}\right)^{4}\left(\frac{3 p}{1+2 p}\right)^{3}<{ }^{7} C_{3}\left(\frac{1-p}{1+2 p}\right)^{3}\left(\frac{3 p}{1+2 p}\right)^{4}$
so that $\frac{7(6)}{2}\left(\frac{3 p}{1+2 p}\right)<\frac{7(6)(5)}{6}\left(\frac{1-p}{1+2 p}\right)$
and $\frac{1-p}{1+2 p}<\frac{3 p}{1+2 p}$
Hence $3(3 p)<5(1-p)$ and $1-p<3 p$,
so that $14 p<5$ and $1<4 p$,
giving $p<\frac{5}{14}$ and $p>\frac{1}{4}$
ie $\frac{1}{4}<p<\frac{5}{14}$, as required

