STEP 2012, Paper 2, Q12 - Solution (15/7/18; 2 pages)

(i) P(sp light on) = P(H sp switch on) × P(K sp switch on)
= (P(H switches orig. all on) ×
$$\frac{3}{4}$$
 + P(H switches orig. all off) × $\frac{1}{4}$)
× (P(K sp switch orig. on) × $\frac{3}{4}$ + P(K sp switch orig. off) × $\frac{1}{4}$)
= $(p \times \frac{3}{4} + (1 - p) \times \frac{1}{4})(\frac{1}{2} \times \frac{3}{4} + \frac{1}{2} \times \frac{1}{4})$
= $\frac{1}{4}(3p + 1 - p)(\frac{1}{2})$ (*)
= $\frac{2p+1}{8}$

P(H sp switch pressed | sp light on)

$$= \frac{P(\text{H sp switch pressed \& sp light on})}{P(\text{sp light on})}$$

P(H sp switch pressed & sp light on)

= $P(H \text{ sp switch orig. off}) \times P(H \text{ sp switch pressed})$

×P(correct K sw pressed)

=
$$(1-p) \times \frac{1}{4} \times \frac{1}{2}$$
 (the factor of $\frac{1}{2}$ is the same as the $\frac{1}{2}$ in (*))

So P(H sp switch pressed | sp light on) = $\frac{(1-p) \times \frac{1}{8}}{\frac{2p+1}{8}} = \frac{1-p}{1+2p}$, as required.

(ii) [This is a very strange and unclear situation. If in doubt, assume the simplest possible interpretation: in this case, that we are dealing with a random variable $\sim B(7, \frac{1-p}{1+2p})$; even though it sounds as though we are considering 7 Mondays in the past.]

Let X be the number of times that the H sp switch was pressed (given that the sp light was on).

Then
$$X \sim B(7, \frac{1-p}{1+2p})$$

It is given that P(X = 2) < P(X = 3)and P(X = 4) < P(X = 3), as 3 is the modal value of X Noting that $1 - \left(\frac{1-p}{1+2n}\right) = \frac{1+2p-1+p}{1+2n} = \frac{3p}{1+2n}$, ${}^{7}C_{2}\left(\frac{1-p}{1+2n}\right)^{2}\left(\frac{3p}{1+2n}\right)^{5} < {}^{7}C_{3}\left(\frac{1-p}{1+2n}\right)^{3}\left(\frac{3p}{1+2n}\right)^{4}$ and ${}^{7}C_{4}\left(\frac{1-p}{1+2n}\right)^{4}\left(\frac{3p}{1+2n}\right)^{3} < {}^{7}C_{3}\left(\frac{1-p}{1+2n}\right)^{3}\left(\frac{3p}{1+2n}\right)^{4}$ so that $\frac{7(6)}{2} \left(\frac{3p}{1+2n} \right) < \frac{7(6)(5)}{6} \left(\frac{1-p}{1+2n} \right)$ and $\frac{1-p}{1+2n} < \frac{3p}{1+2n}$ Hence 3(3p) < 5(1-p) and 1-p < 3p, so that 14p < 5 and 1 < 4p, giving $p < \frac{5}{14}$ and $p > \frac{1}{4}$ ie $\frac{1}{4} , as required$