STEP 2012, Paper 1, Q2 - Solution (4 pages; 15/6/18)

Please note: The official 2012 "Hints and Answers" are mainly hints rather than answers, so the following sol'n hasn't been checked against anything.
(i) $y=x^{4}-6 x^{2}+9=\left(x^{2}-3\right)^{2}$ (symmetry about y-axis)
$\& \frac{d y}{d x}=4 x\left(x^{2}-3\right) \Rightarrow$ stationary points at $(0,9),(\sqrt{3}, 0),(-\sqrt{3}, 0)$

[When the Hints \& Sol'ns say "by considering the graph of $y=x^{2}-3^{\prime \prime}$, they are referring to the fact that the squaring of $x^{2}-3$ causes the portion below the x-axis to be reflected in the x - axis (as well as squaring the magnitude).]

Considering vertical translations of $y=x^{4}-6 x^{2}+9$ [it is perhaps easier to visualise the x-axis moving up and down, than the curve moving]:
(a) $(n=0) b>9$
(b) $(n=1)$ none
(c) $(n=2) b=9$ or $b<0$
(d) $(n=3) b=0$
(e) $(n=4) 0<b<9$
[Note that when the Hints \& Solutions refer to "the second part", they mean this last part; not part (ii)]
(ii) $y=x^{4}-6 x^{2}+a x+b$
$\frac{d y}{d x}=0 \Rightarrow 4 x^{3}-12 x+a=0$
$\frac{d^{2} y}{d x^{2}}=0 \Rightarrow 12 x^{2}-12=0 \Rightarrow x= \pm 1$
From (1), $x=1 \Rightarrow a=8$ and $x=-1 \Rightarrow a=-8$

When $a=8, \frac{d y}{d x}=4 x^{3}-12 x+8$
We know that $x=1$ is a root of $\frac{d y}{d x}=0$,
and so $4 x^{3}-12 x+8=4\left(x^{3}-3 x+2\right)=4(x-1)\left(x^{2}+x-2\right)$
$=4(x-1)^{2}(x+2)$
$\left[\frac{d^{2} y}{d x^{2}}=0 \Rightarrow\right.$ point of inflexion if $\frac{d^{3} y}{d x^{3}} \neq 0$ (this is a sufficient, but not necessary condition); in this case, $\frac{d^{3} y}{d x^{3}}=24 x$, so $\frac{d^{3} y}{d x^{3}} \neq 0$ at $x=$ $\pm 1]$

Now $y(-2)=16-24-16+b=b-24$,
so that $b<24 \Rightarrow$ no roots of $x^{4}-6 x^{2}+a x+b=0$
$b=24 \Rightarrow 1$ root
$b>24 \Rightarrow 2$ roots
[again, it is probably easier to visualise the x-axis moving up and down]
When $a=-8, \frac{d y}{d x}=4 x^{3}-12 x-8$
$x=-1$ is a root of $\frac{d y}{d x}=0$,
so that $4 x^{3}-12 x-8=4\left(x^{3}-3 x-2\right)=4(x+1)\left(x^{2}-x-2\right)$
$=4(x+1)^{2}(x-2)$
and $y(2)=16-24-16+b=b-24$, as before; so the same cases arise
(iii) $y=x^{4}-6 x^{2}+a x \Rightarrow \frac{d y}{d x}=4 x^{3}-12 x+a$ (1)

Consider the graph of $y=4 x^{3}-12 x=4 x\left(x^{2}-3\right)$

Then $\frac{d}{d x}\left(4 x^{3}-12 x\right)=12 x^{2}-12$, so that the turning points of (2) are at $x= \pm 1$

As the minimum is at $(1,-8)$, (1) will cross the x-axis once when $a>8$; ie $y=x^{4}-6 x^{2}+a x$ will have one stationary point (for a value of $x<-1$).

Also $\frac{d}{d x}\left(4 x^{3}-12 x+a\right)=12 x^{2}-12=0$ at $x= \pm 1$ (as already established), so that there will be points of inflexion of $y=x^{4}-6 x^{2}+a x$ at these values.

[To help draw non-stationary points of inflexion, think of $\tan x$ at $x=0$, where $\frac{d y}{d x}=1$]

